These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 32480272)
1. Chlorophyll a fluorescence and Raman spectroscopy can monitor activation/deactivation of photosynthesis and carotenoids in Antarctic lichens. Mishra KB; Vítek P; Mishra A; Hájek J; Barták M Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118458. PubMed ID: 32480272 [TBL] [Abstract][Full Text] [Related]
2. A correlative approach, combining chlorophyll a fluorescence, reflectance, and Raman spectroscopy, for monitoring hydration induced changes in Antarctic lichen Dermatocarpon polyphyllizum. Mishra KB; Vítek P; Barták M Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 208():13-23. PubMed ID: 30282060 [TBL] [Abstract][Full Text] [Related]
3. Photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum when affected by desiccation and low temperatures. Bednaříková M; Váczi P; Lazár D; Barták M Photosynth Res; 2020 Aug; 145(2):159-177. PubMed ID: 32720111 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of Primary Photosynthesis in Desiccating Antarctic Lichens Differing in Their Photobionts, Thallus Morphology, and Spectral Properties. Barták M; Hájek J; Orekhova A; Villagra J; Marín C; Palfner G; Casanova-Katny A Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33924436 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence. Hájek J; Barták M; Hazdrová J; Forbelská M Cryobiology; 2016 Dec; 73(3):329-334. PubMed ID: 27729220 [TBL] [Abstract][Full Text] [Related]
6. Effect of UV-B radiation on the content of UV-B absorbing compounds and photosynthetic parameters in Parmotrema austrosinense from two contrasting habitats. Barták M; Pláteníková E; Carreras H; Hájek J; Morkusová J; Mateos AC; Marečková M Plant Biol (Stuttg); 2018 Sep; 20(5):808-816. PubMed ID: 29888486 [TBL] [Abstract][Full Text] [Related]
7. Photosynthesis measurements on the upper and lower side of the thallus of the foliose lichen Nephroma arcticum (L.) Torss. Chekanov K; Lobakova E Photosynth Res; 2021 Sep; 149(3):289-301. PubMed ID: 34215958 [TBL] [Abstract][Full Text] [Related]
8. Freezing temperature effects on photosystem II in Antarctic lichens evaluated by chlorophyll fluorescence. Andrzejowska A; Hájek J; Puhovkin A; Harańczyk H; Barták M J Plant Physiol; 2024 Mar; 294():154192. PubMed ID: 38382176 [TBL] [Abstract][Full Text] [Related]
9. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Vítek P; Novotná K; Hodaňová P; Rapantová B; Klem K Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():234-41. PubMed ID: 27450121 [TBL] [Abstract][Full Text] [Related]
10. Laboratory and field measurements of water relations, photosynthetic parameters, and hydration traits in macrolichens in a tropical lower montane rainforest in Thailand. Boonpeng C; Pischom M; Butrid P; Noikrad S; Boonpragob K J Plant Res; 2024 Jul; 137(4):641-658. PubMed ID: 38619624 [TBL] [Abstract][Full Text] [Related]
11. Spatial and Temporal Variability of Plant Leaf Responses Cascade after PSII Inhibition: Raman, Chlorophyll Fluorescence and Infrared Thermal Imaging. Vítek P; Veselá B; Klem K Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32069965 [TBL] [Abstract][Full Text] [Related]
12. Apparent electron transport rate - a non-invasive proxy of photosynthetic CO Solhaug KA; Asplund J; Gauslaa Y Planta; 2021 Jan; 253(1):14. PubMed ID: 33392847 [TBL] [Abstract][Full Text] [Related]
13. Secondary Metabolites from Australian Lichens Bačkor M; Kecsey D; Drábová B; Urminská D; Šemeláková M; Goga M Molecules; 2024 Sep; 29(19):. PubMed ID: 39407550 [TBL] [Abstract][Full Text] [Related]
16. Photoprotection in the lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching. Veerman J; Vasil'ev S; Paton GD; Ramanauskas J; Bruce D Plant Physiol; 2007 Nov; 145(3):997-1005. PubMed ID: 17827268 [TBL] [Abstract][Full Text] [Related]
17. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora). Janka E; Körner O; Rosenqvist E; Ottosen CO Plant Physiol Biochem; 2015 May; 90():14-22. PubMed ID: 25749731 [TBL] [Abstract][Full Text] [Related]
18. Non-destructive insights into photosynthetic and photoprotective mechanisms in Arabidopsis thaliana grown under two light regimes. Vítek P; Mishra KB; Mishra A; Veselá B; Findurová H; Svobodová K; Oravec M; Sahu PP; Klem K Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121531. PubMed ID: 35863186 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related]
20. Photosynthesis in chlorolichens: the influence of the habitat light regime. Piccotto M; Tretiach M J Plant Res; 2010 Nov; 123(6):763-75. PubMed ID: 20376524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]