These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32480299)

  • 1. Determination of metal-abundant high-density particles in municipal solid waste incineration bottom ash by a series of processes: Sieving, magnetic separation, air table sorting, and milling.
    Back S; Ueda K; Sakanakura H
    Waste Manag; 2020 Jul; 112():11-19. PubMed ID: 32480299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of recoverable metal resources and harmful elements depending on particle size and density in municipal solid waste incineration bottom ash from dry discharge system.
    Back S; Sakanakura H
    Waste Manag; 2021 May; 126():652-663. PubMed ID: 33872974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties.
    Pfandl K; Küppers B; Scheiber S; Stockinger G; Holzer J; Pomberger R; Antrekowitsch H; Vollprecht D
    Waste Manag Res; 2020 Feb; 38(2):111-121. PubMed ID: 31621535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants.
    Alam Q; Florea MVA; Schollbach K; Brouwers HJH
    Waste Manag; 2017 Sep; 67():181-192. PubMed ID: 28578859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the efficiency of metal recovery from wet- and dry-discharged municipal solid waste incineration bottom ash by air table sorting and milling.
    Back S; Sakanakura H
    Waste Manag; 2022 Dec; 154():113-125. PubMed ID: 36228330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical characterization and heavy metals leaching potential of municipal solid waste incinerated bottom ash (MSWI-BA) when utilized in road construction.
    Zhu Y; Zhao Y; Zhao C; Gupta R
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):14184-14197. PubMed ID: 32040740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany.
    Holm O; Simon FG
    Waste Manag; 2017 Jan; 59():229-236. PubMed ID: 27625178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of calcium sulfo-aluminate cement as an alternative to Portland Cement for the recycling of municipal solid waste incineration bottom ash in mortar.
    Antoun M; Becquart F; Gerges N; Aouad G
    Waste Manag Res; 2020 Aug; 38(8):868-875. PubMed ID: 32419672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining sieving and washing, a way to treat MSWI boiler fly ash.
    De Boom A; Degrez M
    Waste Manag; 2015 May; 39():179-88. PubMed ID: 25736808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal distribution characteristic of MSWI bottom ash in view of metal recovery.
    Xia Y; He P; Shao L; Zhang H
    J Environ Sci (China); 2017 Feb; 52():178-189. PubMed ID: 28254036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.
    Funari V; Braga R; Bokhari SN; Dinelli E; Meisel T
    Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.
    Allegrini E; Maresca A; Olsson ME; Holtze MS; Boldrin A; Astrup TF
    Waste Manag; 2014 Sep; 34(9):1627-36. PubMed ID: 24889793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant-assisted air flotation: A novel approach for the removal of microplastics from municipal solid waste incineration bottom ash.
    Chai J; Shi Y; Wang Y; Yang X; Pi K; Gerson AR
    Sci Total Environ; 2023 Aug; 884():163841. PubMed ID: 37142027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash.
    Nithiya A; Saffarzadeh A; Shimaoka T
    Waste Manag; 2018 Mar; 73():342-350. PubMed ID: 28666630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of material recovery from waste incineration bottom ash.
    Huber F
    Waste Manag; 2020 Mar; 105():61-72. PubMed ID: 32028102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Content and fractionation of Cu, Zn and Cd in size fractionated municipal solid waste incineration bottom ash.
    Yao J; Kong Q; Zhu H; Long Y; Shen D
    Ecotoxicol Environ Saf; 2013 Aug; 94():131-7. PubMed ID: 23731863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal recovery from incineration bottom ash: State-of-the-art and recent developments.
    Šyc M; Simon FG; Hykš J; Braga R; Biganzoli L; Costa G; Funari V; Grosso M
    J Hazard Mater; 2020 Jul; 393():122433. PubMed ID: 32143166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant.
    Nikravan M; Ramezanianpour AA; Maknoon R
    J Environ Manage; 2020 Apr; 260():110042. PubMed ID: 31941624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching of metals from asphalt pavement incorporating municipal solid waste incineration fly ash.
    Yang JZ; Yang Y; Li Y; Chen L; Zhang J; Die Q; Fang Y; Pan Y; Huang Q
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27106-27111. PubMed ID: 30022387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of an interim storage field using recovered municipal solid waste incineration bottom ash: Field performance study.
    Sormunen LA; Kolisoja P
    Waste Manag; 2017 Jun; 64():107-116. PubMed ID: 28325702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.