BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 32480527)

  • 1. Genetic variation in Fe toxicity tolerance is associated with the regulation of translocation and chelation of iron along with antioxidant defence in shoots of rice.
    Kabir AH; Begum MC; Haque A; Amin R; Swaraz AM; Haider SA; Paul NK; Hossain MM
    Funct Plant Biol; 2016 Nov; 43(11):1070-1081. PubMed ID: 32480527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress.
    Kabir AH
    Plant Biol (Stuttg); 2016 Jul; 18(4):710-9. PubMed ID: 26804776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice.
    Bari MA; Akther MS; Reza MA; Kabir AH
    Plant Physiol Biochem; 2019 Mar; 136():22-33. PubMed ID: 30639786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms.
    Aung MS; Masuda H
    Front Plant Sci; 2020; 11():1102. PubMed ID: 32849682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the 'early salinity response' triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach.
    Lakra N; Kaur C; Singla-Pareek SL; Pareek A
    Rice (N Y); 2019 Jan; 12(1):3. PubMed ID: 30701331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Silicon Counteracting Cadmium Toxicity in Alfalfa (Medicago sativa L.).
    Kabir AH; Hossain MM; Khatun MA; Mandal A; Haider SA
    Front Plant Sci; 2016; 7():1117. PubMed ID: 27512401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems.
    Mahmud JA; Hasanuzzaman M; Nahar K; Bhuyan MHMB; Fujita M
    Ecotoxicol Environ Saf; 2018 Jan; 147():990-1001. PubMed ID: 29976011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression.
    Rizwan M; Mostofa MG; Ahmad MZ; Imtiaz M; Mehmood S; Adeel M; Dai Z; Li Z; Aziz O; Zhang Y; Tu S
    Chemosphere; 2018 Jan; 191():23-35. PubMed ID: 29028538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Phytosiderophore Release and Antioxidant Defense in Roots Driven by Shoot-Based Auxin Signaling Confers Tolerance to Excess Iron in Wheat.
    Kabir AH; Khatun MA; Hossain MM; Haider SA; Alam MF; Paul NK
    Front Plant Sci; 2016; 7():1684. PubMed ID: 27891139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different Rhizospheric pH Conditions Affect Nutrient Accumulations in Rice under Salinity Stress.
    Nampei M; Jiadkong K; Chuamnakthong S; Wangsawang T; Sreewongchai T; Ueda A
    Plants (Basel); 2021 Jun; 10(7):. PubMed ID: 34202279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil.
    Masuda H; Shimochi E; Hamada T; Senoura T; Kobayashi T; Aung MS; Ishimaru Y; Ogo Y; Nakanishi H; Nishizawa NK
    PLoS One; 2017; 12(3):e0173441. PubMed ID: 28278216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Vacuolar Membrane Ferric-Chelate Reductase, OsFRO1, Alleviates Fe Toxicity in Rice (
    Li L; Ye L; Kong Q; Shou H
    Front Plant Sci; 2019; 10():700. PubMed ID: 31214220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and molecular properties of Boro rice (
    Rehman M; Kundu B; Regon P; Tanti B
    3 Biotech; 2023 Dec; 13(12):422. PubMed ID: 38047036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Different Salts on Nutrients Uptake, Gene Expression, Antioxidant, and Growth Pattern of Selected Rice Genotypes.
    Farooq M; Asif S; Jang YH; Park JR; Zhao DD; Kim EG; Kim KM
    Front Plant Sci; 2022; 13():895282. PubMed ID: 35783927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype Variation in Rice (
    Stein RJ; Duarte GL; Scheunemann L; Spohr MG; de Araújo Júnior AT; Ricachenevsky FK; Rosa LMG; Zanchin NIT; Dos Santos RP; Fett JP
    Front Plant Sci; 2019; 10():746. PubMed ID: 31244872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 2. Root oxidation ability and oxidative stress control.
    Onyango DA; Entila F; Egdane J; Pacleb M; Katimbang ML; Dida MM; Ismail AM; Drame KN
    Funct Plant Biol; 2020 Feb; 47(2):145-155. PubMed ID: 31940265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.) by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure.
    Geng A; Wang X; Wu L; Wang F; Wu Z; Yang H; Chen Y; Wen D; Liu X
    Ecotoxicol Environ Saf; 2018 Aug; 158():266-273. PubMed ID: 29715631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings.
    Fu Y; Yang X; Shen H
    Ecotoxicol Environ Saf; 2018 Oct; 161():534-541. PubMed ID: 29929129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression patterns of QTL based and other candidate genes in Madhukar × Swarna RILs with contrasting levels of iron and zinc in unpolished rice grains.
    Agarwal S; Tripura Venkata VG; Kotla A; Mangrauthia SK; Neelamraju S
    Gene; 2014 Aug; 546(2):430-6. PubMed ID: 24887487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron deficiency responses in rice roots.
    Kobayashi T; Nakanishi Itai R; Nishizawa NK
    Rice (N Y); 2014 Dec; 7(1):27. PubMed ID: 26224556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.