These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 32480567)
1. Comparison of isohydric and anisohydric Vitis vinifera L. cultivars reveals a fine balance between hydraulic resistances, driving forces and transpiration in ripening berries. Scharwies JD; Tyerman SD Funct Plant Biol; 2017 Feb; 44(3):324-338. PubMed ID: 32480567 [TBL] [Abstract][Full Text] [Related]
2. Hydraulic connection of grape berries to the vine: varietal differences in water conductance into and out of berries, and potential for backflow. Tilbrook J; Tyerman SD Funct Plant Biol; 2009 Jun; 36(6):541-550. PubMed ID: 32688668 [TBL] [Abstract][Full Text] [Related]
3. Ripening grape berries remain hydraulically connected to the shoot. Keller M; Smith JP; Bondada BR J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045 [TBL] [Abstract][Full Text] [Related]
4. A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation. Shelden MC; Vandeleur R; Kaiser BN; Tyerman SD Front Plant Sci; 2017; 8():1893. PubMed ID: 29163613 [TBL] [Abstract][Full Text] [Related]
5. Cell death in grape berries: varietal differences linked to xylem pressure and berry weight loss. Tilbrook J; Tyerman SD Funct Plant Biol; 2008 May; 35(3):173-184. PubMed ID: 32688771 [TBL] [Abstract][Full Text] [Related]
6. Functional xylem in the post-veraison grape berry. Bondada BR; Matthews MA; Shackel KA J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748 [TBL] [Abstract][Full Text] [Related]
7. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Keller M; Zhang Y; Shrestha PM; Biondi M; Bondada BR Plant Cell Environ; 2015 Jun; 38(6):1048-59. PubMed ID: 25293537 [TBL] [Abstract][Full Text] [Related]
8. Discharge of surplus phloem water may be required for normal grape ripening. Zhang Y; Keller M J Exp Bot; 2017 Jan; 68(3):585-595. PubMed ID: 28082510 [TBL] [Abstract][Full Text] [Related]
9. Direct in situ measurement of cell turgor in grape (Vitis vinifera L.) berries during development and in response to plant water deficits. Thomas TR; Matthews MA; Shackel KA Plant Cell Environ; 2006 May; 29(5):993-1001. PubMed ID: 17087481 [TBL] [Abstract][Full Text] [Related]
10. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. Coupel-Ledru A; Lebon É; Christophe A; Doligez A; Cabrera-Bosquet L; Péchier P; Hamard P; This P; Simonneau T J Exp Bot; 2014 Nov; 65(21):6205-18. PubMed ID: 25381432 [TBL] [Abstract][Full Text] [Related]
11. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Tombesi S; Nardini A; Farinelli D; Palliotti A Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791 [TBL] [Abstract][Full Text] [Related]
12. Loss of rachis cell viability is associated with ripening disorders in grapes. Hall GE; Bondada BR; Keller M J Exp Bot; 2011 Jan; 62(3):1145-53. PubMed ID: 21071679 [TBL] [Abstract][Full Text] [Related]
13. The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-veraison berries. Chatelet DS; Rost TL; Shackel KA; Matthews MA J Exp Bot; 2008; 59(8):1987-96. PubMed ID: 18440931 [TBL] [Abstract][Full Text] [Related]
14. Vascular Connections Into the Grape Berry: The Link of Structural Investment to Seededness. Xiao Z; Chin S; White RG; Gourieroux AM; Pagay V; Tyerman SD; Schmidtke LM; Rogiers SY Front Plant Sci; 2021; 12():662433. PubMed ID: 33936151 [TBL] [Abstract][Full Text] [Related]
15. The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Vandeleur RK; Mayo G; Shelden MC; Gilliham M; Kaiser BN; Tyerman SD Plant Physiol; 2009 Jan; 149(1):445-60. PubMed ID: 18987216 [TBL] [Abstract][Full Text] [Related]
16. Comparing Hydraulics Between Two Grapevine Cultivars Reveals Differences in Stomatal Regulation Under Water Stress and Exogenous ABA Applications. Dayer S; Scharwies JD; Ramesh SA; Sullivan W; Doerflinger FC; Pagay V; Tyerman SD Front Plant Sci; 2020; 11():705. PubMed ID: 32636852 [TBL] [Abstract][Full Text] [Related]
17. Vascular function in grape berries across development and its relevance to apparent hydraulic isolation. Choat B; Gambetta GA; Shackel KA; Matthews MA Plant Physiol; 2009 Nov; 151(3):1677-87. PubMed ID: 19741048 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought. Yi K; Dragoni D; Phillips RP; Roman DT; Novick KA Tree Physiol; 2017 Oct; 37(10):1379-1392. PubMed ID: 28062727 [TBL] [Abstract][Full Text] [Related]
19. Fruit ripening in Vitis vinifera: apoplastic solute accumulation accounts for pre-veraison turgor loss in berries. Wada H; Shackel KA; Matthews MA Planta; 2008 May; 227(6):1351-61. PubMed ID: 18317799 [TBL] [Abstract][Full Text] [Related]
20. Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar? Rogiers SY; Greer DH; Hutton RJ; Landsberg JJ J Exp Bot; 2009; 60(13):3751-63. PubMed ID: 19584116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]