These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32480641)

  • 1. Roles played by invertase and gene expression in the development of the horn-shaped gall on leaves of Rhus chinensis.
    Ruan ZY; Chen XM; Yang P; Wang BY
    Funct Plant Biol; 2017 Nov; 44(12):1160-1170. PubMed ID: 32480641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced invertase activities in the galls of Hormaphis hamamelidis.
    Rehill BJ; Schultz JC
    J Chem Ecol; 2003 Dec; 29(12):2703-20. PubMed ID: 14969357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development.
    Takeda S; Yoza M; Amano T; Ohshima I; Hirano T; Sato MH; Sakamoto T; Kimura S
    PLoS One; 2019; 14(10):e0223686. PubMed ID: 31647845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gall development and clone dynamics of the galling aphid Schlechtendalia chinensis (Hemiptera: Pemphigidae).
    Shao SX; Yang ZX; Chen XM
    J Econ Entomol; 2013 Aug; 106(4):1628-37. PubMed ID: 24020275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chromosome-level genome assembly of the Rhus gall aphid Schlechtendalia chinensis provides insight into the endogenization of Parvovirus-like DNA sequences.
    Ahmad A; von Dohlen C; Ren Z
    BMC Genomics; 2024 Jan; 25(1):16. PubMed ID: 38166596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Complex Nutrient Exchange Between a Gall-Forming Aphid and Its Plant Host.
    Chen X; Yang Z; Chen H; Qi Q; Liu J; Wang C; Shao S; Lu Q; Li Y; Wu H; King-Jones K; Chen MS
    Front Plant Sci; 2020; 11():811. PubMed ID: 32733495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming of the Developmental Program of
    Hirano T; Kimura S; Sakamoto T; Okamoto A; Nakayama T; Matsuura T; Ikeda Y; Takeda S; Suzuki Y; Ohshima I; Sato MH
    Front Plant Sci; 2020; 11():471. PubMed ID: 32499792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response.
    Bonfig KB; Gabler A; Simon UK; Luschin-Ebengreuth N; Hatz M; Berger S; Muhammad N; Zeier J; Sinha AK; Roitsch T
    Mol Plant; 2010 Nov; 3(6):1037-48. PubMed ID: 20833735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical responses of chestnut oak to a galling cynipid.
    Allison SD; Schultz JC
    J Chem Ecol; 2005 Jan; 31(1):151-66. PubMed ID: 15839487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microenvironmental analysis of two alternating hosts and their impact on the ecological adaptation of the horned sumac gall aphid Schlechtendalia chinensis (Hemiptera, Pemphiginae).
    Wang C; Liu P; Chen X; Liu J; Lu Q; Shao S; Yang Z; Chen H; King-Jones K
    Sci Rep; 2020 Jan; 10(1):435. PubMed ID: 31949256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of invertase: a 'suite' of transcriptional and post-transcriptional mechanisms.
    Huang LF; Bocock PN; Davis JM; Koch KE
    Funct Plant Biol; 2007 Jun; 34(6):499-507. PubMed ID: 32689379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation and diversification of the microbiome of Schlechtendalia chinensis on two alternate host plants.
    Wu HX; Chen X; Chen H; Lu Q; Yang Z; Ren W; Liu J; Shao S; Wang C; King-Jones K; Chen MS
    PLoS One; 2018; 13(11):e0200049. PubMed ID: 30408037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression.
    Kim JY; Mahé A; Brangeon J; Prioul JL
    Plant Physiol; 2000 Sep; 124(1):71-84. PubMed ID: 10982423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of two gall-forming arthropods on the photosynthetic rates of their hosts.
    Larson KC
    Oecologia; 1998 Jun; 115(1-2):161-166. PubMed ID: 28308447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detoxification Gene Families at the Genome-Wide Level of
    He H; Crabbe MJC; Ren Z
    Genes (Basel); 2022 Sep; 13(9):. PubMed ID: 36140795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of vacuolar and defective cell wall invertase genes in roots and seeds of metalliferous and non-metalliferous populations of Rumex dentatus under copper stress.
    Xu ZR; Cai SW; Huang WX; Liu RX; Xiong ZT
    Ecotoxicol Environ Saf; 2018 Jan; 147():17-25. PubMed ID: 28822946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the Arabidopsis thaliana invertase gene family.
    Tymowska-Lalanne Z; Kreis M
    Planta; 1998 Dec; 207(2):259-65. PubMed ID: 9951726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-length cloning, sequence analysis and expression detection of the β-tubulin gene from the Chinese gall aphid (Schlechtendalia chinensis).
    Liu P; Yang ZX; Chen XM; Chen H
    Sci Rep; 2017 Jul; 7(1):6459. PubMed ID: 28743930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings.
    Zhou C; Huang M; Ren H; Yu J; Wu J; Ma X
    Ecotoxicol Environ Saf; 2017 Aug; 142():59-68. PubMed ID: 28388478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-Scale analysis of both wild and cultivated horned galls provides insight into their quality differentiation.
    Tian X; Sang Z; Lan Z; Liu W; Feng Y; Hu J; Chen F; Liu Y
    BMC Plant Biol; 2023 Sep; 23(1):426. PubMed ID: 37710158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.