These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 32480783)
1. Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Belko N; Zaman-Allah M; Cisse N; Diop NN; Zombre G; Ehlers JD; Vadez V Funct Plant Biol; 2012 May; 39(4):306-322. PubMed ID: 32480783 [TBL] [Abstract][Full Text] [Related]
2. Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea. Belko N; Zaman-Allah M; Diop NN; Cisse N; Zombre G; Ehlers JD; Vadez V Plant Biol (Stuttg); 2013 Mar; 15(2):304-16. PubMed ID: 22823007 [TBL] [Abstract][Full Text] [Related]
3. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. Kholová J; Hash CT; Kumar PL; Yadav RS; Kocová M; Vadez V J Exp Bot; 2010 Mar; 61(5):1431-40. PubMed ID: 20142425 [TBL] [Abstract][Full Text] [Related]
4. Maize, sorghum, and pearl millet have highly contrasting species strategies to adapt to water stress and climate change-like conditions. Choudhary S; Guha A; Kholova J; Pandravada A; Messina CD; Cooper M; Vadez V Plant Sci; 2020 Jun; 295():110297. PubMed ID: 32534623 [TBL] [Abstract][Full Text] [Related]
5. Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Zaman-Allah M; Jenkinson DM; Vadez V Funct Plant Biol; 2011 Apr; 38(4):270-281. PubMed ID: 32480883 [TBL] [Abstract][Full Text] [Related]
6. Genotypic variation of conservative and profligate water use in the vegetative and reproductive stages of canola ( Luo T; Hu L; Zhang H Funct Plant Biol; 2022 Feb; 49(3):231-244. PubMed ID: 34991784 [TBL] [Abstract][Full Text] [Related]
7. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. Kholová J; Hash CT; Kakkera A; Kocová M; Vadez V J Exp Bot; 2010; 61(2):369-77. PubMed ID: 19861657 [TBL] [Abstract][Full Text] [Related]
8. Chickpea Genotypes Contrasting for Vigor and Canopy Conductance Also Differ in Their Dependence on Different Water Transport Pathways. Sivasakthi K; Tharanya M; Kholová J; Wangari Muriuki R; Thirunalasundari T; Vadez V Front Plant Sci; 2017; 8():1663. PubMed ID: 29085377 [TBL] [Abstract][Full Text] [Related]
9. Broader leaves result in better performance of indica rice under drought stress. Farooq M; Kobayashi N; Ito O; Wahid A; Serraj R J Plant Physiol; 2010 Sep; 167(13):1066-75. PubMed ID: 20392520 [TBL] [Abstract][Full Text] [Related]
11. Pearl millet (Pennisetum glaucum) contrasting for the transpiration response to vapour pressure deficit also differ in their dependence on the symplastic and apoplastic water transport pathways. Tharanya M; Sivasakthi K; Barzana G; Kholová J; Thirunalasundari T; Vadez V Funct Plant Biol; 2018 Jun; 45(7):719-736. PubMed ID: 32291047 [TBL] [Abstract][Full Text] [Related]
12. Variability in temperature-independent transpiration responses to evaporative demand correlate with nighttime water use and its circadian control across diverse wheat populations. Tamang BG; Schoppach R; Monnens D; Steffenson BJ; Anderson JA; Sadok W Planta; 2019 Jul; 250(1):115-127. PubMed ID: 30941570 [TBL] [Abstract][Full Text] [Related]
13. Water extraction under terminal drought explains the genotypic differences in yield, not the anti-oxidant changes in leaves of pearl millet (Pennisetum glaucum). Kholov J; Vadez V Funct Plant Biol; 2012 Feb; 40(1):44-53. PubMed ID: 32481085 [TBL] [Abstract][Full Text] [Related]
14. Pearl Millet Aquaporin Gene Reddy PS; Dhaware MG; Sivasakthi K; Divya K; Nagaraju M; Sri Cindhuri K; Kavi Kishor PB; Bhatnagar-Mathur P; Vadez V; Sharma KK Front Plant Sci; 2022; 13():820996. PubMed ID: 35356115 [TBL] [Abstract][Full Text] [Related]
15. Identifying physiological and genetic determinants of faba bean transpiration response to evaporative demand. Mandour H; Khazaei H; Stoddard FL; Dodd IC Ann Bot; 2023 Apr; 131(3):533-544. PubMed ID: 36655613 [TBL] [Abstract][Full Text] [Related]
16. Understanding and Exploiting Transpiration Response to Vapor Pressure Deficit for Water Limited Environments. Broughton KJ; Conaty WC Front Plant Sci; 2022; 13():893994. PubMed ID: 35620701 [TBL] [Abstract][Full Text] [Related]
17. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L. Rasheed F; Dreyer E; Richard B; Brignolas F; Brendel O; Le Thiec D Plant Cell Environ; 2015 Apr; 38(4):670-84. PubMed ID: 25099629 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning and expression analysis of Aquaporin genes in pearl millet [Pennisetum glaucum (L) R. Br.] genotypes contrasting in their transpiration response to high vapour pressure deficits. Reddy PS; Tharanya M; Sivasakthi K; Srikanth M; Hash CT; Kholova J; Sharma KK; Vadez V Plant Sci; 2017 Dec; 265():167-176. PubMed ID: 29223338 [TBL] [Abstract][Full Text] [Related]
19. Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R.Br.). Kholová J; Zindy P; Malayee S; Baddam R; Murugesan T; Kaliamoorthy S; Hash CT; Votrubová O; Soukup A; Ko Ová M; Niang M; Vadez V Funct Plant Biol; 2016 May; 43(5):423-437. PubMed ID: 32480473 [TBL] [Abstract][Full Text] [Related]
20. Transpiration Response of Cotton to Vapor Pressure Deficit and Its Relationship With Stomatal Traits. Devi MJ; Reddy VR Front Plant Sci; 2018; 9():1572. PubMed ID: 30420866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]