BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32480804)

  • 1. Münch without tears: a steady-state Münch-like model of phloem so simplified that it requires only algebra to predict the speed of translocation.
    Pickard WF
    Funct Plant Biol; 2012 Jun; 39(6):531-537. PubMed ID: 32480804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simplest steady-state Munch-like model of phloem translocation, with source and pathway and sink.
    Pickard WF; Abraham-Shrauner B
    Funct Plant Biol; 2009 Jul; 36(7):629-644. PubMed ID: 32688676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct measurements of sieve element hydrostatic pressure reveal strong regulation after pathway blockage.
    Gould N; Minchin PEH; Thorpe MR
    Funct Plant Biol; 2004 Nov; 31(10):987-993. PubMed ID: 32688967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phloem hydrostatic pressure relates to solute loading rate: a direct test of the Münch hypothesis.
    Gould N; Thorpe MR; Koroleva O; Minchin PEH
    Funct Plant Biol; 2005 Nov; 32(11):1019-1026. PubMed ID: 32689197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of the Münch hypothesis for phloem transport in soybean.
    Fisher DB
    Planta; 1978 Jan; 139(1):25-8. PubMed ID: 24414101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mathematical Treatment of Munch's Pressure-Flow Hypothesis of Phloem Translocation.
    Christy AL; Ferrier JM
    Plant Physiol; 1973 Dec; 52(6):531-8. PubMed ID: 16658599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the Münch hypothesis of long distance phloem transport in plants.
    Knoblauch M; Knoblauch J; Mullendore DL; Savage JA; Babst BA; Beecher SD; Dodgen AC; Jensen KH; Holbrook NM
    Elife; 2016 Jun; 5():. PubMed ID: 27253062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal dynamics of phloem loading: theoretical consequences for transport efficiency and flow characteristics.
    Sellier D; Mammeri Y
    Tree Physiol; 2019 Feb; 39(2):300-311. PubMed ID: 30753675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Osmotic Gradients in Soybean Sieve Tubes by Quantitative Autoradiography: Qualified Support for the MUnch Hypothesis.
    Housley TL; Fisher DB
    Plant Physiol; 1977 Apr; 59(4):701-6. PubMed ID: 16659921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytic solutions and universal properties of sugar loading models in Münch phloem flow.
    Jensen KH; Berg-Sørensen K; Friis SM; Bohr T
    J Theor Biol; 2012 Jul; 304():286-96. PubMed ID: 22774225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simpler iterative steady state solution of münch pressure-flow systems applied to long and short translocation paths.
    Tyree MT; Christy AL; Ferrier JM
    Plant Physiol; 1974 Oct; 54(4):589-600. PubMed ID: 16658935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universality of phloem transport in seed plants.
    Jensen KH; Liesche J; Bohr T; Schulz A
    Plant Cell Environ; 2012 Jun; 35(6):1065-76. PubMed ID: 22150791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients.
    Stanfield RC; Schulte PJ; Randolph KE; Hacke UG
    Plant Cell Environ; 2019 Feb; 42(2):466-479. PubMed ID: 30074610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration-dependent Unloading as a Necessary Assumption for a Closed Form Mathematical Model of Osmotically Driven Pressure Flow in Phloem.
    Goeschl JD; Magnuson CE; Demichele DW; Sharpe PJ
    Plant Physiol; 1976 Oct; 58(4):556-62. PubMed ID: 16659717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.
    Komor E; Orlich G; Weig A; Köckenberger W
    J Exp Bot; 1996 Aug; 47 Spec No():1155-64. PubMed ID: 21245244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling phloem transport within a pruned dwarf bean: a 2-source-3-sink system.
    Thorpe MR; Lacointe A; Minchin PEH
    Funct Plant Biol; 2011 Feb; 38(2):127-138. PubMed ID: 32480869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Münch's adaptation of Pfeffer's circulating water flow became the pressure-flow theory, and the resulting problems - A historical perspective.
    Peters WS; Knoblauch M
    J Plant Physiol; 2022 May; 272():153672. PubMed ID: 35366573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phloem transport: a review of mechanisms and controls.
    De Schepper V; De Swaef T; Bauweraerts I; Steppe K
    J Exp Bot; 2013 Nov; 64(16):4839-50. PubMed ID: 24106290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solute is imported to elongating root cells of barley as a pressure driven-flow of solution.
    Gould N; Thorpe MR; Minchin PEH; Pritchard J; White PJ
    Funct Plant Biol; 2004 May; 31(4):391-397. PubMed ID: 32688909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Proposed Drought Response Equation Added to the Münch-Horwitz Theory of Phloem Transport.
    Goeschl JD; Han L
    Front Plant Sci; 2020; 11():505153. PubMed ID: 33250905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.