BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32480955)

  • 1. Non-invasive approaches for phenotyping of enhanced performance traits in bean.
    Rascher U; Blossfeld S; Fiorani F; Jahnke S; Jansen M; Kuhn AJ; Matsubara S; M Rtin LLA; Merchant A; Metzner R; M Ller-Linow M; Nagel KA; Pieruschka R; Pinto F; Schreiber CM; Temperton VM; Thorpe MR; Dusschoten DV; Van Volkenburgh E; Windt CW; Schurr U
    Funct Plant Biol; 2011 Dec; 38(12):968-983. PubMed ID: 32480955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field phenotyping for African crops: overview and perspectives.
    Cudjoe DK; Virlet N; Castle M; Riche AB; Mhada M; Waine TW; Mohareb F; Hawkesford MJ
    Front Plant Sci; 2023; 14():1219673. PubMed ID: 37860243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.
    Wasson AP; Richards RA; Chatrath R; Misra SC; Prasad SV; Rebetzke GJ; Kirkegaard JA; Christopher J; Watt M
    J Exp Bot; 2012 May; 63(9):3485-98. PubMed ID: 22553286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Future scenarios for plant phenotyping.
    Fiorani F; Schurr U
    Annu Rev Plant Biol; 2013; 64():267-91. PubMed ID: 23451789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply.
    Gioia T; Galinski A; Lenz H; Müller C; Lentz J; Heinz K; Briese C; Putz A; Fiorani F; Watt M; Schurr U; Nagel KA
    Funct Plant Biol; 2016 Feb; 44(1):76-93. PubMed ID: 32480548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root phenotyping: from component trait in the lab to breeding.
    Kuijken RC; van Eeuwijk FA; Marcelis LF; Bouwmeester HJ
    J Exp Bot; 2015 Sep; 66(18):5389-401. PubMed ID: 26071534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.
    Postma JA; Schurr U; Fiorani F
    Biotechnol Adv; 2014; 32(1):53-65. PubMed ID: 24012600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Belowground plant development measured with magnetic resonance imaging (MRI): exploiting the potential for non-invasive trait quantification using sugar beet as a proxy.
    Metzner R; van Dusschoten D; Bühler J; Schurr U; Jahnke S
    Front Plant Sci; 2014; 5():469. PubMed ID: 25278947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging Image Analysis for High-Throughput Plant Phenotyping.
    Das Choudhury S; Samal A; Awada T
    Front Plant Sci; 2019; 10():508. PubMed ID: 31068958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.
    Shakoor N; Lee S; Mockler TC
    Curr Opin Plant Biol; 2017 Aug; 38():184-192. PubMed ID: 28738313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined MRI-PET dissects dynamic changes in plant structures and functions.
    Jahnke S; Menzel MI; van Dusschoten D; Roeb GW; Bühler J; Minwuyelet S; Blümler P; Temperton VM; Hombach T; Streun M; Beer S; Khodaverdi M; Ziemons K; Coenen HH; Schurr U
    Plant J; 2009 Aug; 59(4):634-44. PubMed ID: 19392708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.
    Cabrera-Bosquet L; Crossa J; von Zitzewitz J; Serret MD; Araus JL
    J Integr Plant Biol; 2012 May; 54(5):312-20. PubMed ID: 22420640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons.
    Nagel KA; Putz A; Gilmer F; Heinz K; Fischbach A; Pfeifer J; Faget M; Blossfeld S; Ernst M; Dimaki C; Kastenholz B; Kleinert AK; Galinski A; Scharr H; Fiorani F; Schurr U
    Funct Plant Biol; 2012 Nov; 39(11):891-904. PubMed ID: 32480839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping.
    Pound MP; Fozard S; Torres Torres M; Forde BG; French AP
    Plant Methods; 2017; 13():12. PubMed ID: 28286542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
    Großkinsky DK; Svensgaard J; Christensen S; Roitsch T
    J Exp Bot; 2015 Sep; 66(18):5429-40. PubMed ID: 26163702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.
    Wasson A; Bischof L; Zwart A; Watt M
    J Exp Bot; 2016 Feb; 67(4):1033-43. PubMed ID: 26826219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of high-throughput phenotyping data for differentiation among nutrient deficiency in common bean.
    Lazarević B; Carović-Stanko K; Živčak M; Vodnik D; Javornik T; Safner T
    Front Plant Sci; 2022; 13():931877. PubMed ID: 35937354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato.
    Paul K; Sorrentino M; Lucini L; Rouphael Y; Cardarelli M; Bonini P; Reynaud H; Canaguier R; Trtílek M; Panzarová K; Colla G
    Front Plant Sci; 2019; 10():47. PubMed ID: 30800134
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.