These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32480955)

  • 21. Volatilomics: a non-invasive technique for screening plant phenotypic traits.
    Jud W; Winkler JB; Niederbacher B; Niederbacher S; Schnitzler JP
    Plant Methods; 2018; 14():109. PubMed ID: 30568721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The advantages of functional phenotyping in pre-field screening for drought-tolerant crops.
    Negin B; Moshelion M
    Funct Plant Biol; 2016 Feb; 44(1):107-118. PubMed ID: 32480550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volatile organic compounds as non-invasive markers for plant phenotyping.
    Niederbacher B; Winkler JB; Schnitzler JP
    J Exp Bot; 2015 Sep; 66(18):5403-16. PubMed ID: 25969554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applying high-throughput phenotyping to plant-insect interactions: picturing more resistant crops.
    Goggin FL; Lorence A; Topp CN
    Curr Opin Insect Sci; 2015 Jun; 9():69-76. PubMed ID: 32846711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensor-based phenotyping of above-ground plant-pathogen interactions.
    Tanner F; Tonn S; de Wit J; Van den Ackerveken G; Berger B; Plett D
    Plant Methods; 2022 Mar; 18(1):35. PubMed ID: 35313920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities.
    Tracy SR; Nagel KA; Postma JA; Fassbender H; Wasson A; Watt M
    Trends Plant Sci; 2020 Jan; 25(1):105-118. PubMed ID: 31806535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole-Plant Manual and Image-Based Phenotyping in Controlled Environments.
    Agnew E; Bray A; Floro E; Ellis N; Gierer J; Lizárraga C; O'Brien D; Wiechert M; Mockler TC; Shakoor N; Topp CN
    Curr Protoc Plant Biol; 2017 Mar; 2(1):1-21. PubMed ID: 31725975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine Learning for High-Throughput Stress Phenotyping in Plants.
    Singh A; Ganapathysubramanian B; Singh AK; Sarkar S
    Trends Plant Sci; 2016 Feb; 21(2):110-124. PubMed ID: 26651918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Telemetric, Gravimetric Platform for Real-Time Physiological Phenotyping of Plant-Environment Interactions.
    Dalal A; Shenhar I; Bourstein R; Mayo A; Grunwald Y; Averbuch N; Attia Z; Wallach R; Moshelion M
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32831303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant Physiological Analysis to Overcome Limitations to Plant Phenotyping.
    Haworth M; Marino G; Atzori G; Fabbri A; Daccache A; Killi D; Carli A; Montesano V; Conte A; Balestrini R; Centritto M
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating modelling and phenotyping approaches to identify and screen complex traits: transpiration efficiency in cereals.
    Chenu K; Van Oosterom EJ; McLean G; Deifel KS; Fletcher A; Geetika G; Tirfessa A; Mace ES; Jordan DR; Sulman R; Hammer GL
    J Exp Bot; 2018 Jun; 69(13):3181-3194. PubMed ID: 29474730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological phenotyping of plants for crop improvement.
    Ghanem ME; Marrou H; Sinclair TR
    Trends Plant Sci; 2015 Mar; 20(3):139-44. PubMed ID: 25524213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A Review.
    Jiang Y; Li C
    Plant Phenomics; 2020; 2020():4152816. PubMed ID: 33313554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review.
    Humplík JF; Lazár D; Husičková A; Spíchal L
    Plant Methods; 2015; 11():29. PubMed ID: 25904970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Chamber #8" - a holistic approach of high-throughput non-destructive assessment of plant roots.
    Claussen J; Wittenberg T; Uhlmann N; Gerth S
    Front Plant Sci; 2023; 14():1269005. PubMed ID: 38239230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From lab to field, new approaches to phenotyping root system architecture.
    Zhu J; Ingram PA; Benfey PN; Elich T
    Curr Opin Plant Biol; 2011 Jun; 14(3):310-7. PubMed ID: 21530367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris).
    McClean PE; Burridge J; Beebe S; Rao IM; Porch TG
    Funct Plant Biol; 2011 Dec; 38(12):927-933. PubMed ID: 32480951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.
    Clark RT; Famoso AN; Zhao K; Shaff JE; Craft EJ; Bustamante CD; McCouch SR; Aneshansley DJ; Kochian LV
    Plant Cell Environ; 2013 Feb; 36(2):454-66. PubMed ID: 22860896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving nitrogen use efficiency in plants: effective phenotyping in conjunction with agronomic and genetic approaches.
    Nguyen GN; Kant S
    Funct Plant Biol; 2018 May; 45(6):606-619. PubMed ID: 32290963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced phenotyping and phenotype data analysis for the study of plant growth and development.
    Rahaman MM; Chen D; Gillani Z; Klukas C; Chen M
    Front Plant Sci; 2015; 6():619. PubMed ID: 26322060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.