These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 32481000)

  • 21. Auxin-cytokinin interactions in the control of shoot branching.
    Shimizu-Sato S; Tanaka M; Mori H
    Plant Mol Biol; 2009 Mar; 69(4):429-35. PubMed ID: 18974937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exogenous application of GA
    Tan M; Li G; Liu X; Cheng F; Ma J; Zhao C; Zhang D; Han M
    Mol Genet Genomics; 2018 Dec; 293(6):1547-1563. PubMed ID: 30116947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Execution of the auxin replacement apical dominance experiment in temperate woody species.
    Cline MG
    Am J Bot; 2000 Feb; 87(2):182-90. PubMed ID: 10675304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long and short photoperiod buds in hybrid aspen share structural development and expression patterns of marker genes.
    Rinne PL; Paul LK; Vahala J; Ruonala R; Kangasjärvi J; van der Schoot C
    J Exp Bot; 2015 Nov; 66(21):6745-60. PubMed ID: 26248666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is auxin the repressor signal of branch growth in apical control?
    Cline MG; Sadeski K
    Am J Bot; 2002 Nov; 89(11):1764-71. PubMed ID: 21665603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier
    Shen J; Zhang Y; Ge D; Wang Z; Song W; Gu R; Che G; Cheng Z; Liu R; Zhang X
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):17105-17114. PubMed ID: 31391306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-β-glucanase genes during branching in hybrid aspen.
    Rinne PL; Paul LK; Vahala J; Kangasjärvi J; van der Schoot C
    J Exp Bot; 2016 Nov; 67(21):5975-5991. PubMed ID: 27697786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New genes in the strigolactone-related shoot branching pathway.
    Beveridge CA; Kyozuka J
    Curr Opin Plant Biol; 2010 Feb; 13(1):34-9. PubMed ID: 19913454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activities and survival of endophytic bacteria in white clover (Trifolium repens L.).
    Burch G; Sarathchandra U
    Can J Microbiol; 2006 Sep; 52(9):848-56. PubMed ID: 17110977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The importance of strigolactone transport regulation for symbiotic signaling and shoot branching.
    Borghi L; Liu GW; Emonet A; Kretzschmar T; Martinoia E
    Planta; 2016 Jun; 243(6):1351-60. PubMed ID: 27040840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum.
    Kebrom TH; Mullet JE
    Plant Cell Environ; 2015 Aug; 38(8):1471-8. PubMed ID: 25496467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites.
    Yoneyama K; Yoneyama K; Takeuchi Y; Sekimoto H
    Planta; 2007 Mar; 225(4):1031-8. PubMed ID: 17260144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modular construction of the protoderm and peripheral root cap in the "open" root apical meristem of Trifolium repens cv. Ladino.
    Wenzel CL; Tong KL; Rost TL
    Protoplasma; 2001; 218(3-4):214-24. PubMed ID: 11770437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ancestors of white clover ( Trifolium repens L.), as revealed by isozyme polymorphisms.
    Badr A; Sayed-Ahmed H; El-Shanshouri A; Watson IE
    Theor Appl Genet; 2002 Dec; 106(1):143-8. PubMed ID: 12582882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is white clover able to switch to atmospheric sulphur sources when sulphate availability decreases?
    Varin S; Lemauviel-Lavenant S; Cliquet JB
    J Exp Bot; 2013 May; 64(8):2511-21. PubMed ID: 23645868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Update on the Signals Controlling Shoot Branching.
    Barbier FF; Dun EA; Kerr SC; Chabikwa TG; Beveridge CA
    Trends Plant Sci; 2019 Mar; 24(3):220-236. PubMed ID: 30797425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.
    Katyayini NU; Rinne PILH; van der Schoot C
    Plant Cell Physiol; 2019 Dec; 60(12):2797-2811. PubMed ID: 31504881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The gravity-regulated growth of axillary buds is mediated by a mechanism different from decapitation-induced release.
    Kitazawa D; Miyazawa Y; Fujii N; Hoshino A; Iida S; Nitasaka E; Takahashi H
    Plant Cell Physiol; 2008 Jun; 49(6):891-900. PubMed ID: 18420594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antagonistic regulation of axillary bud outgrowth by the BRANCHED genes in tobacco.
    Ding N; Qin Q; Wu X; Miller R; Zaitlin D; Li D; Yang S
    Plant Mol Biol; 2020 May; 103(1-2):185-196. PubMed ID: 32124178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A positive approach to branching.
    Janssen BJ; Drummond RS; Ledger SE; Snowden KC
    Plant Signal Behav; 2010 Apr; 5(4):422-4. PubMed ID: 20118665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.