These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32481085)

  • 1. Water extraction under terminal drought explains the genotypic differences in yield, not the anti-oxidant changes in leaves of pearl millet (Pennisetum glaucum).
    Kholov J; Vadez V
    Funct Plant Biol; 2012 Feb; 40(1):44-53. PubMed ID: 32481085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.].
    Kholová J; Hash CT; Kakkera A; Kocová M; Vadez V
    J Exp Bot; 2010; 61(2):369-77. PubMed ID: 19861657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit.
    Kholová J; Hash CT; Kumar PL; Yadav RS; Kocová M; Vadez V
    J Exp Bot; 2010 Mar; 61(5):1431-40. PubMed ID: 20142425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative trait loci associated with constitutive traits control water use in pearl millet [Pennisetum glaucum (L.) R. Br].
    Aparna K; Nepolean T; Srivastsava RK; Kholová J; Rajaram V; Kumar S; Rekha B; Senthilvel S; Hash CT; Vadez V
    Plant Biol (Stuttg); 2015 Sep; 17(5):1073-84. PubMed ID: 25946470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet.
    Yadav RS; Sehgal D; Vadez V
    J Exp Bot; 2011 Jan; 62(2):397-408. PubMed ID: 20819788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L. R.Br.).
    Tharanya M; Kholova J; Sivasakthi K; Seghal D; Hash CT; Raj B; Srivastava RK; Baddam R; Thirunalasundari T; Yadav R; Vadez V
    Theor Appl Genet; 2018 Jul; 131(7):1509-1529. PubMed ID: 29679097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet).
    Ghatak A; Chaturvedi P; Nagler M; Roustan V; Lyon D; Bachmann G; Postl W; Schröfl A; Desai N; Varshney RK; Weckwerth W
    J Proteomics; 2016 Jun; 143():122-135. PubMed ID: 26944736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Tools in Pearl Millet Breeding for Drought Tolerance: Status and Prospects.
    Serba DD; Yadav RS
    Front Plant Sci; 2016; 7():1724. PubMed ID: 27920783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R.Br.).
    Kholová J; Zindy P; Malayee S; Baddam R; Murugesan T; Kaliamoorthy S; Hash CT; Votrubová O; Soukup A; Ko Ová M; Niang M; Vadez V
    Funct Plant Biol; 2016 May; 43(5):423-437. PubMed ID: 32480473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and expression analysis of Aquaporin genes in pearl millet [Pennisetum glaucum (L) R. Br.] genotypes contrasting in their transpiration response to high vapour pressure deficits.
    Reddy PS; Tharanya M; Sivasakthi K; Srikanth M; Hash CT; Kholova J; Sharma KK; Vadez V
    Plant Sci; 2017 Dec; 265():167-176. PubMed ID: 29223338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet.
    Shivhare R; Asif MH; Lata C
    Plant Mol Biol; 2020 Aug; 103(6):639-652. PubMed ID: 32430635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea.
    Belko N; Zaman-Allah M; Cisse N; Diop NN; Zombre G; Ehlers JD; Vadez V
    Funct Plant Biol; 2012 May; 39(4):306-322. PubMed ID: 32480783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions.
    Faye A; Sine B; Chopart JL; Grondin A; Lucas M; Diedhiou AG; Gantet P; Cournac L; Min D; Audebert A; Kane A; Laplaze L
    PLoS One; 2019; 14(7):e0214182. PubMed ID: 31329591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects.
    Srivastava RK; Yadav OP; Kaliamoorthy S; Gupta SK; Serba DD; Choudhary S; Govindaraj M; Kholová J; Murugesan T; Satyavathi CT; Gumma MK; Singh RB; Bollam S; Gupta R; Varshney RK
    Front Plant Sci; 2022; 13():781524. PubMed ID: 35463391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.
    de la Fuente C; Grondin A; Sine B; Debieu M; Belin C; Hajjarpoor A; Atkinson JA; Passot S; Salson M; Orjuela J; Tranchant-Dubreuil C; Brossier JR; Steffen M; Morgado C; Dinh HN; Pandey BK; Darmau J; Champion A; Petitot AS; Barrachina C; Pratlong M; Mounier T; Nakombo-Gbassault P; Gantet P; Gangashetty P; Guedon Y; Vadez V; Reichheld JP; Bennett MJ; Kane NA; Guyomarc'h S; Wells DM; Vigouroux Y; Laplaze L
    Elife; 2024 Jan; 12():. PubMed ID: 38294329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of yield gains under climate change due to genetic modification of pearl millet.
    Singh P; Boote KJ; Kadiyala MDM; Nedumaran S; Gupta SK; Srinivas K; Bantilan MCS
    Sci Total Environ; 2017 Dec; 601-602():1226-1237. PubMed ID: 28605840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat.
    Ghatak A; Chaturvedi P; Bachmann G; Valledor L; Ramšak Ž; Bazargani MM; Bajaj P; Jegadeesan S; Li W; Sun X; Gruden K; Varshney RK; Weckwerth W
    Front Plant Sci; 2020; 11():600278. PubMed ID: 33519854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions.
    Yadav RS; Hash CT; Bidinger FR; Cavan GP; Howarth CJ
    Theor Appl Genet; 2002 Jan; 104(1):67-83. PubMed ID: 12579430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pearl millet (Pennisetum glaucum) contrasting for the transpiration response to vapour pressure deficit also differ in their dependence on the symplastic and apoplastic water transport pathways.
    Tharanya M; Sivasakthi K; Barzana G; Kholová J; Thirunalasundari T; Vadez V
    Funct Plant Biol; 2018 Jun; 45(7):719-736. PubMed ID: 32291047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security.
    Satyavathi CT; Ambawat S; Khandelwal V; Srivastava RK
    Front Plant Sci; 2021; 12():659938. PubMed ID: 34589092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.