These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 32481111)

  • 21. A cold-responsive wheat (Triticum aestivum L.) gene wcor14 identified in a winter-hardy cultivar 'Mironovska 808'.
    Tsvetanov S; Ohno R; Tsuda K; Takumi S; Mori N; Atanassov A; Nakamura C
    Genes Genet Syst; 2000 Feb; 75(1):49-57. PubMed ID: 10846621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and structural insights into candidate genes associated with nitrogen and phosphorus nutrition in wheat (Triticum aestivum L.).
    Kumar A; Sharma M; Kumar S; Tyagi P; Wani SH; Gajula MNVP; Singh KP
    Int J Biol Macromol; 2018 Oct; 118(Pt A):76-91. PubMed ID: 29879411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homeologue Specific Gene Expression Analysis of Two Vital Carbon Metabolizing Enzymes-Citrate Synthase and NADP-Isocitrate Dehydrogenase-from Wheat (Triticum aestivum L.) Under Nitrogen Stress : Homeologue Specific gene expression of CS and NADP-ICDH.
    Gayatri ; Rani M; Mahato AK; Sinha SK; Dalal M; Singh NK; Mandal PK
    Appl Biochem Biotechnol; 2019 Jul; 188(3):569-584. PubMed ID: 30552625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Trihelix transcription factors between wheat and Brachypodium distachyon at genome-wide.
    Wang C; Wang Y; Pan Q; Chen S; Feng C; Hai J; Li H
    BMC Genomics; 2019 Feb; 20(1):142. PubMed ID: 30770726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.).
    Aramrak A; Kidwell KK; Steber CM; Burke IC
    BMC Genomics; 2015 Oct; 16():844. PubMed ID: 26492960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of a large-scale Triticeae expressed sequence tag resource to reveal gene expression profiles in hexaploid wheat (Triticum aestivum L.).
    Chao S; Lazo GR; You F; Crossman CC; Hummel DD; Lui N; Laudencia-Chingcuanco D; Anderson JA; Close TJ; Dubcovsky J; Gill BS; Gill KS; Gustafson JP; Kianian SF; Lapitan NL; Nguyen HT; Sorrells ME; McGuire PE; Qualset CO; Anderson OD
    Genome; 2006 May; 49(5):531-44. PubMed ID: 16767178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species.
    Krattinger SG; Lagudah ES; Wicker T; Risk JM; Ashton AR; Selter LL; Matsumoto T; Keller B
    Plant J; 2011 Feb; 65(3):392-403. PubMed ID: 21265893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular cloning and functional analysis of two phosphate transporter genes from Rhizopogon luteolus and Leucocortinarius bulbiger, two ectomycorrhizal fungi of Pinus tabulaeformis.
    Zheng R; Wang J; Liu M; Duan G; Gao X; Bai S; Han Y
    Mycorrhiza; 2016 Oct; 26(7):633-44. PubMed ID: 27098350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The genes encoding granule-bound starch synthases at the waxy loci of the A, B, and D progenitors of common wheat.
    Yan L; Bhave M; Fairclough R; Konik C; Rahman S; Appels R
    Genome; 2000 Apr; 43(2):264-72. PubMed ID: 10791814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-Wide Identification and Analysis of HAK/KUP/KT Potassium Transporters Gene Family in Wheat (
    Cheng X; Liu X; Mao W; Zhang X; Chen S; Zhan K; Bi H; Xu H
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil.
    Cohen CK; Garvin DF; Kochian LV
    Planta; 2004 Mar; 218(5):784-92. PubMed ID: 14648120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TaNBP1, a guanine nucleotide-binding subunit gene of wheat, is essential in the regulation of N starvation adaptation via modulating N acquisition and ROS homeostasis.
    Liu Z; Zhao Y; Wang X; Yang M; Guo C; Xiao K
    BMC Plant Biol; 2018 Aug; 18(1):167. PubMed ID: 30103700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular cloning and characterization of phosphate (Pi) responsive genes in Gulf ryegrass (Lolium multiflorum L.): a Pi hyperaccumulator.
    Venkatachalam P; Jain A; Sahi S; Raghothama K
    Plant Mol Biol; 2009 Jan; 69(1-2):1-21. PubMed ID: 18821059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis.
    Daram P; Brunner S; Rausch C; Steiner C; Amrhein N; Bucher M
    Plant Cell; 1999 Nov; 11(11):2153-66. PubMed ID: 10559441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing?
    Gu M; Chen A; Sun S; Xu G
    Mol Plant; 2016 Mar; 9(3):396-416. PubMed ID: 26714050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide mining of respiratory burst homologs and its expression in response to biotic and abiotic stresses in Triticum aestivum.
    Navathe S; Singh S; Singh VK; Chand R; Mishra VK; Joshi AK
    Genes Genomics; 2019 Sep; 41(9):1027-1043. PubMed ID: 31140145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments.
    Shin H; Shin HS; Dewbre GR; Harrison MJ
    Plant J; 2004 Aug; 39(4):629-42. PubMed ID: 15272879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OsPHT1;3 Mediates Uptake, Translocation, and Remobilization of Phosphate under Extremely Low Phosphate Regimes.
    Chang MX; Gu M; Xia YW; Dai XL; Dai CR; Zhang J; Wang SC; Qu HY; Yamaji N; Feng Ma J; Xu GH
    Plant Physiol; 2019 Feb; 179(2):656-670. PubMed ID: 30567970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can Aluminum Tolerant Wheat Cultivar Perform Better under Phosphate Deficient Conditions?
    Karim MR; Dong X; Zheng L; Shen R; Lan P
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30274178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat.
    Milner MJ; Howells RM; Craze M; Bowden S; Graham N; Wallington EJ
    BMC Plant Biol; 2018 Jun; 18(1):115. PubMed ID: 29884124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.