BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 32481113)

  • 1. Grain, sugar and biomass accumulation in photoperiod-sensitive sorghums. II. Biochemical processes at internode level and interaction with phenology.
    Gutjahr S; Cl Ment-Vidal A; Soutiras A; Sonderegger N; Braconnier S; Dingkuhn ML; Luquet D
    Funct Plant Biol; 2013 May; 40(4):355-368. PubMed ID: 32481113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain, sugar and biomass accumulation in tropical sorghums. I. Trade-offs and effects of phenological plasticity.
    Gutjahr S; Vaksmann M; Dingkuhn ML; Thera K; Trouche G; Braconnier S; Luquet D
    Funct Plant Biol; 2013 May; 40(4):342-354. PubMed ID: 32481112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression.
    Bihmidine S; Baker RF; Hoffner C; Braun DM
    BMC Plant Biol; 2015 Jul; 15():186. PubMed ID: 26223524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement.
    Li Y; Tu M; Feng Y; Wang W; Messing J
    Biotechnol Biofuels; 2019; 12():274. PubMed ID: 31832097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem sugar accumulation in sweet sorghum - activity and expression of sucrose metabolizing enzymes and sucrose transporters.
    Qazi HA; Paranjpe S; Bhargava S
    J Plant Physiol; 2012 Apr; 169(6):605-13. PubMed ID: 22325624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology and whole-plant carbon partitioning during stem sugar accumulation in sweet dwarf sorghum.
    Babst BA; Karve A; Sementilli A; Dweikat I; Braun DM
    Planta; 2021 Sep; 254(4):80. PubMed ID: 34546416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses.
    Cuevas HE; Zhou C; Tang H; Khadke PP; Das S; Lin YR; Ge Z; Clemente T; Upadhyaya HD; Hash CT; Paterson AH
    Mol Biol Evol; 2016 Sep; 33(9):2417-28. PubMed ID: 27335143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of Sorghum Stem Biomass Accumulation in Response to Water Deficit: A Multiscale Analysis from Internode Tissue to Plant Level.
    Perrier L; Rouan L; Jaffuel S; Clément-Vidal A; Roques S; Soutiras A; Baptiste C; Bastianelli D; Fabre D; Dubois C; Pot D; Luquet D
    Front Plant Sci; 2017; 8():1516. PubMed ID: 28919904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.
    McKinley B; Rooney W; Wilkerson C; Mullet J
    Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in stem sugar content and metabolism in sorghum genotypes subjected to drought stress.
    Qazi HA; Srinivasa Rao P; Kashikar A; Suprasanna P; Bhargava S
    Funct Plant Biol; 2014 Sep; 41(9):954-962. PubMed ID: 32481048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Next Generation Sequencing with Bulked Segregant Analysis to Fine Map a Stem Moisture Locus in Sorghum (Sorghum bicolor L. Moench).
    Han Y; Lv P; Hou S; Li S; Ji G; Ma X; Du R; Liu G
    PLoS One; 2015; 10(5):e0127065. PubMed ID: 25984727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of stem sugar and its remobilisation in response to drought stress in a sweet sorghum genotype and its near-isogenic lines carrying different stay-green loci.
    Ghate T; Deshpande S; Bhargava S
    Plant Biol (Stuttg); 2017 May; 19(3):396-405. PubMed ID: 28032438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of phyllochron, plastochron and rate of increase in height in photoperiod-sensitive sorghum varieties.
    Clerget B; Dingkuhn M; Gozé E; Rattunde HF; Ney B
    Ann Bot; 2008 Mar; 101(4):579-94. PubMed ID: 18230624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentation of sucrose during radial transfer in mature sorghum culm.
    Tarpley L; Vietor DM
    BMC Plant Biol; 2007 Jun; 7():33. PubMed ID: 17584916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage.
    Chandra A; Verma PK; Islam MN; Grisham MP; Jain R; Sharma A; Roopendra K; Singh K; Singh P; Verma I; Solomon S
    Plant Biol (Stuttg); 2015 May; 17(3):608-17. PubMed ID: 25311688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorghum stem aerenchyma formation is regulated by
    Casto AL; McKinley BA; Yu KMJ; Rooney WL; Mullet JE
    Plant Direct; 2018 Nov; 2(11):e00085. PubMed ID: 31245693
    [No Abstract]   [Full Text] [Related]  

  • 17. A new high-throughput assay for determining soluble sugar in sorghum internode-extracted juice.
    Li Y; Mehta R; Messing J
    Planta; 2018 Oct; 248(4):785-793. PubMed ID: 29948129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stover Composition in Maize and Sorghum Reveals Remarkable Genetic Variation and Plasticity for Carbohydrate Accumulation.
    Sekhon RS; Breitzman MW; Silva RR; Santoro N; Rooney WL; de Leon N; Kaeppler SM
    Front Plant Sci; 2016; 7():822. PubMed ID: 27375668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum.
    Yu H; Cong L; Zhu Z; Wang C; Zou J; Tao C; Shi Z; Lu X
    Gene; 2015 Oct; 571(2):221-30. PubMed ID: 26117170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench.
    Shiringani AL; Frisch M; Friedt W
    Theor Appl Genet; 2010 Jul; 121(2):323-36. PubMed ID: 20229249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.