These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 32481137)

  • 1. Changes in xylem tissue and laccase transcript abundance associated with posture recovery in Chamaecyparis obtusa saplings growing on an incline.
    Sato S; Hiraide H; Yoshida M; Yamamoto H
    Funct Plant Biol; 2013 Jul; 40(6):637-643. PubMed ID: 32481137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood.
    Hiraide H; Tobimatsu Y; Yoshinaga A; Lam PY; Kobayashi M; Matsushita Y; Fukushima K; Takabe K
    New Phytol; 2021 Jun; 230(6):2186-2199. PubMed ID: 33570753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening genes that change expression during compression wood formation in Chamaecyparis obtusa.
    Yamashita S; Yoshida M; Yamamoto H; Okuyama T
    Tree Physiol; 2008 Sep; 28(9):1331-40. PubMed ID: 18595845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem-righting mechanism in gymnosperm trees deduced from limitations in compression wood development.
    Yamashita S; Yoshida M; Takayama S; Okuyama T
    Ann Bot; 2007 Mar; 99(3):487-93. PubMed ID: 17218339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ detection of laccase activity and immunolocalisation of a compression-wood-specific laccase (CoLac1) in differentiating xylem of Chamaecyparis obtusa.
    Hiraide H; Yoshida M; Sato S; Yamamoto H
    Funct Plant Biol; 2016 Jun; 43(6):542-552. PubMed ID: 32480484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavitation of intercellular spaces is critical to establishment of hydraulic properties of compression wood of Chamaecyparis obtusa seedlings.
    Nakaba S; Hirai A; Kudo K; Yamagishi Y; Yamane K; Kuroda K; Nugroho WD; Kitin P; Funada R
    Ann Bot; 2016 Mar; 117(3):457-63. PubMed ID: 26818592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative deposition of xylan and 8-5'-linked lignin structure in Chamaecyparis obtusa, as revealed by double immunolabeling by using monoclonal antibodies.
    Kiyoto S; Yoshinaga A; Takabe K
    Planta; 2015 Jan; 241(1):243-56. PubMed ID: 25269398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of proteins from the developing xylem of compression and non-compression wood of branches of sitka spruce (Picea sitchensis) reveals a differentially expressed laccase.
    McDougall GJ
    J Exp Bot; 2000 Aug; 51(349):1395-401. PubMed ID: 10944153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A laccase associated with lignification in loblolly pine xylem.
    Bao W; O'malley DM; Whetten R; Sederoff RR
    Science; 1993 Apr; 260(5108):672-4. PubMed ID: 17812228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized cooling of stems induces latewood formation and cambial dormancy during seasons of active cambium in conifers.
    Begum S; Kudo K; Matsuoka Y; Nakaba S; Yamagishi Y; Nabeshima E; Rahman MH; Nugroho WD; Oribe Y; Jin HO; Funada R
    Ann Bot; 2016 Mar; 117(3):465-77. PubMed ID: 26703452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Component analysis of four-part extracts from
    Kwak BM; Kim EH; Kim YM; Kim HT
    J Exerc Rehabil; 2019 Oct; 15(5):723-730. PubMed ID: 31723563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of coniferin in differentiating normal and compression woods using MALDI mass spectrometric imaging coupled with osmium tetroxide vapor treatment.
    Yoshinaga A; Kamitakahara H; Takabe K
    Tree Physiol; 2016 May; 36(5):643-52. PubMed ID: 26507270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax.
    Le Roy J; Blervacq AS; Créach A; Huss B; Hawkins S; Neutelings G
    BMC Plant Biol; 2017 Jul; 17(1):124. PubMed ID: 28705193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graviresponses in herb and trees: a major role for the redistribution of tissue and growth stresses.
    Hejnowicz Z
    Planta; 1997 Sep; 203(Suppl 1):S136-46. PubMed ID: 11540322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Precious Potential of the Sacred Tree
    Górski KM; Kowalczyk T; Picot L; Rijo P; Ghorbanpour M; Sitarek P
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473970
    [No Abstract]   [Full Text] [Related]  

  • 16. Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster ait.).
    Plomion C; Pionneau C; Brach J; Costa P; Baillères H
    Plant Physiol; 2000 Jul; 123(3):959-69. PubMed ID: 10889244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Latex-less opium poppy: cause for less latex and reduced peduncle strength.
    Chaturvedi N; Singh SK; Shukla AK; Lal RK; Gupta MM; Dwivedi UN; Shasany AK
    Physiol Plant; 2014 Mar; 150(3):436-45. PubMed ID: 24033330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylem parenchyma cell walls lack a gravitropic response in conifer compression wood.
    Donaldson LA; Nanayakkara B; Radotić K; Djikanovic-Golubović D; Mitrović A; Bogdanović Pristov J; Simonović Radosavljević J; Kalauzi A
    Planta; 2015 Dec; 242(6):1413-24. PubMed ID: 26287313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of lignin for the production of new compounded materials.
    Hüttermann A; Mai C; Kharazipour A
    Appl Microbiol Biotechnol; 2001 May; 55(4):387-94. PubMed ID: 11398916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of putative candidate genes for juvenile wood density in Pinus radiata.
    Li X; Wu HX; Southerton SG
    Tree Physiol; 2012 Aug; 32(8):1046-57. PubMed ID: 22826379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.