BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32481176)

  • 1. Corrigendum to: Sap-flux density measurement methods: working principles and applicability.
    Vandegehuchte MW; Steppe K
    Funct Plant Biol; 2013 Oct; 40(10):1088. PubMed ID: 32481176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sap-flux density measurement methods: working principles and applicability.
    Vandegehuchte MW; Steppe K
    Funct Plant Biol; 2013 Apr; 40(3):213-223. PubMed ID: 32481101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.
    Vandegehuchte MW; Steppe K
    New Phytol; 2012 Oct; 196(1):306-317. PubMed ID: 22816502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.
    Chen X; Miller GR; Rubin Y; Baldocchi DD
    Tree Physiol; 2012 Dec; 32(12):1458-70. PubMed ID: 23135737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of conduction versus convection in heat pulse sap flow methods.
    Forster MA
    Tree Physiol; 2020 May; 40(5):683-694. PubMed ID: 32031660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of stem temperature changes on heat pulse sap flux density measurements.
    Vandegehuchte MW; Burgess SS; Downey A; Steppe K
    Tree Physiol; 2015 Apr; 35(4):346-53. PubMed ID: 25145698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements.
    Poyatos R; Cermák J; Llorens P
    Tree Physiol; 2007 Apr; 27(4):537-48. PubMed ID: 17241996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactive xylem can explain differences in calibration factors for thermal dissipation probe sap flow measurements.
    Paudel I; Kanety T; Cohen S
    Tree Physiol; 2013 Sep; 33(9):986-1001. PubMed ID: 24128850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing ∆T
    Rabbel I; Diekkrüger B; Voigt H; Neuwirth B
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27916949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies.
    Do F; Rocheteau A
    Tree Physiol; 2002 Jun; 22(9):641-8. PubMed ID: 12069920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single-probe heat pulse method for estimating sap velocity in trees.
    López-Bernal Á; Testi L; Villalobos FJ
    New Phytol; 2017 Oct; 216(1):321-329. PubMed ID: 28722117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of tissue heat balance- and thermal dissipation-derived sap flow measurements in ring-porous oaks and a pine.
    Renninger HJ; Schäfer KV
    Front Plant Sci; 2012; 3():103. PubMed ID: 22661978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heater wattage on sap flux density estimates using an improved tree-cut experiment.
    Gutierrez Lopez J; Licata J; Pypker T; Asbjornsen H
    Tree Physiol; 2019 Apr; 39(4):679-693. PubMed ID: 30597089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings.
    Bleby TM; Burgess SSO; Adams MA
    Funct Plant Biol; 2004 Jul; 31(6):645-658. PubMed ID: 32688936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel, cyclic heat dissipation method for the correction of natural temperature gradients in sap flow measurements. Part 2. Laboratory validation.
    Reyes-Acosta JL; Vandegehuchte MW; Steppe K; Lubczynski MW
    Tree Physiol; 2012 Jul; 32(7):913-29. PubMed ID: 22659459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe.
    Do FC; Isarangkool Na Ayutthaya S; Rocheteau A
    Tree Physiol; 2011 Apr; 31(4):369-80. PubMed ID: 21498407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.
    Gebauer T; Horna V; Leuschner C
    Tree Physiol; 2008 Dec; 28(12):1821-30. PubMed ID: 19193565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.