These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 32481184)

  • 1. Improvement of salt and waterlogging tolerance in wheat: comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents.
    Alamri SA; Barrett-Lennard EG; Teakle NL; Colmer TD
    Funct Plant Biol; 2013 Nov; 40(11):1168-1178. PubMed ID: 32481184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): evaluation of four H. marinum-wheat amphiploids.
    Malik AI; Islam AK; Colmer TD
    New Phytol; 2011 Apr; 190(2):499-508. PubMed ID: 21054414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of root porosity and radial oxygen loss of disomic addition lines of Hordeum marinum in wheat.
    Konnerup D; Malik ALI; Islam AKMR; Colmer TD
    Funct Plant Biol; 2017 Apr; 44(4):400-409. PubMed ID: 32480573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined.
    Malik AI; English JP; Colmer TD
    Ann Bot; 2009 Jan; 103(2):237-48. PubMed ID: 18701600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents.
    Islam S; Malik AI; Islam AK; Colmer TD
    J Exp Bot; 2007; 58(5):1219-29. PubMed ID: 17283374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomical and biochemical characterisation of a barrier to radial O
    Kotula L; Schreiber L; Colmer TD; Nakazono M
    Funct Plant Biol; 2017 Sep; 44(9):845-857. PubMed ID: 32480613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity.
    Garthwaite AJ; Steudle E; Colmer TD
    J Exp Bot; 2006; 57(3):655-64. PubMed ID: 16410258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress.
    Dulai S; Molnár I; Szopkó D; Darkó É; Vojtkó A; Sass-Gyarmati A; Molnár-Láng M
    J Plant Physiol; 2014 Apr; 171(7):509-17. PubMed ID: 24655386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of wild relatives to improve salt tolerance in wheat.
    Colmer TD; Flowers TJ; Munns R
    J Exp Bot; 2006; 57(5):1059-78. PubMed ID: 16513812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum.
    Garthwaite AJ; Bothmer RV; Colmer TD
    Funct Plant Biol; 2003 Sep; 30(8):875-889. PubMed ID: 32689072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of waterlogging tolerance in wheat--a review of root and shoot physiology.
    Herzog M; Striker GG; Colmer TD; Pedersen O
    Plant Cell Environ; 2016 May; 39(5):1068-86. PubMed ID: 26565998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of organic acids on the formation of the barrier to radial oxygen loss in roots of Hordeum marinum.
    Kotula L; Colmer TD; Nakazono M
    Funct Plant Biol; 2014 Feb; 41(2):187-202. PubMed ID: 32480978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis reveals response of differential wheat (Triticum aestivum L.) genotypes to oxygen deficiency stress.
    Pan R; He D; Xu L; Zhou M; Li C; Wu C; Xu Y; Zhang W
    BMC Genomics; 2019 Jan; 20(1):60. PubMed ID: 30658567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability in response to salinity stress in natural Tunisian populations of Hordeum marinum subsp. marinum.
    Saoudi W; Badri M; Taamalli W; Zribi OT; Gandour M; Abdelly C
    Plant Biol (Stuttg); 2019 Jan; 21(1):89-100. PubMed ID: 30098080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley.
    Wu H; Shabala L; Zhou M; Stefano G; Pandolfi C; Mancuso S; Shabala S
    Planta; 2015 Oct; 242(4):847-57. PubMed ID: 25991439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene induction and repression by salt treatment in roots of the salinity-sensitive Chinese Spring wheat and the salinity-tolerant Chinese Spring x Elytrigia elongata amphiploid.
    Gulick P; Dvorák J
    Proc Natl Acad Sci U S A; 1987 Jan; 84(1):99-103. PubMed ID: 16593798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids.
    Zheng Q; Lv Z; Niu Z; Li B; Li H; Xu SS; Han F; Li Z
    J Genet Genomics; 2014 Nov; 41(11):591-9. PubMed ID: 25434682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and Transcriptomic Characterization of Sea-Wheatgrass-Derived Waterlogging Tolerance in Wheat.
    Li W; Challa GS; Gupta A; Gu L; Wu Y; Li W
    Plants (Basel); 2021 Dec; 11(1):. PubMed ID: 35009111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots.
    Garthwaite AJ; von Bothmer R; Colmer TD
    J Exp Bot; 2005 Sep; 56(419):2365-78. PubMed ID: 16014366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random chromosome elimination in synthetic Triticum-Aegilops amphiploids leads to development of a stable partial amphiploid with high grain micro- and macronutrient content and powdery mildew resistance.
    Tiwari VK; Rawat N; Neelam K; Kumar S; Randhawa GS; Dhaliwal HS
    Genome; 2010 Dec; 53(12):1053-65. PubMed ID: 21164538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.