BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32481207)

  • 1. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process.
    Zaied BK; Rashid M; Nasrullah M; Zularisam AW; Pant D; Singh L
    Sci Total Environ; 2020 Jul; 726():138095. PubMed ID: 32481207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of nutrients and other emerging inorganic contaminants from water and wastewater by electrocoagulation process.
    Nidheesh PV; Khan FM; Kadier A; Akansha J; Bote ME; Mousazadeh M
    Chemosphere; 2022 Nov; 307(Pt 2):135756. PubMed ID: 35917977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential use of the electrocoagulation-electrooxidation processes for domestic wastewater treatment.
    Özyonar F; Korkmaz MU
    Chemosphere; 2022 Mar; 290():133172. PubMed ID: 34914950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Various wastewaters treatment by sono-electrocoagulation process: A comprehensive review of operational parameters and future outlook.
    Moradi M; Vasseghian Y; Arabzade H; Mousavi Khaneghah A
    Chemosphere; 2021 Jan; 263():128314. PubMed ID: 33297249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocoagulation and electrooxidation technologies for pesticide removal from water or wastewater: A review.
    Biswas B; Goel S
    Chemosphere; 2022 Sep; 302():134709. PubMed ID: 35489460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of electrocoagulation treatment with iron, aluminum and zinc electrodes for selenium removal from flour production wastewater.
    Gong C; Zhang J; Ren X; He C; Han J; Zhang Z
    Chemosphere; 2022 Sep; 303(Pt 3):135249. PubMed ID: 35691397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel electrocoagulation process with centrifugal electrodes for wastewater treatment: Electrochemical behavior of anode and kinetics of heavy metal removal.
    Yu Y; Zhong Y; Sun W; Xie J; Wang M; Guo Z
    Chemosphere; 2023 Jan; 310():136862. PubMed ID: 36243084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing industrial swine slaughterhouse wastewater treatment: Optimization of electrocoagulation technique and operating mode.
    Sandoval MA; Coreño O; García V; Salazar-González R
    J Environ Manage; 2024 Jan; 349():119556. PubMed ID: 37984271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry.
    Asfaha YG; Zewge F; Yohannes T; Kebede S
    Chemosphere; 2022 Sep; 302():134706. PubMed ID: 35523291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections.
    Kobya M; Bayramoglu M; Eyvaz M
    J Hazard Mater; 2007 Sep; 148(1-2):311-8. PubMed ID: 17368931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater.
    Bani-Melhem K; Al-Kilani MR; Tawalbeh M
    Chemosphere; 2023 Jan; 310():136668. PubMed ID: 36209869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications.
    Bajpai M; Katoch SS; Kadier A; Singh A
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15252-15281. PubMed ID: 34978675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the current waveform in mitigating passivation and enhancing electrocoagulation performance: A critical review.
    Abdollahi J; Alavi Moghaddam MR; Habibzadeh S
    Chemosphere; 2023 Jan; 312(Pt 1):137212. PubMed ID: 36395897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment.
    Othmani A; Kadier A; Singh R; Igwegbe CA; Bouzid M; Aquatar MO; Khanday WA; Bote ME; Damiri F; Gökkuş Ö; Sher F
    Environ Res; 2022 Dec; 215(Pt 1):114294. PubMed ID: 36113573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocoagulation for nutrients removal in the slaughterhouse wastewater: comparison between iron and aluminum electrodes treatment.
    Potrich MC; Duarte ESA; Sikora MS; Costa da Rocha RD
    Environ Technol; 2022 Feb; 43(5):751-765. PubMed ID: 32731790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of electrocoagulation and powder activated carbon for the treatment of sustainable wastewater.
    Sher F; Iqbal SZ; Rasheed T; Hanif K; Sulejmanović J; Zafar F; Lima EC
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):48505-48516. PubMed ID: 33909245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of the neonicotinoid pesticide imidacloprid by electrocoagulation and ultrasound.
    Halkijevic I; Licht K; Kosar V; Bogdan L
    Sci Rep; 2024 Apr; 14(1):8836. PubMed ID: 38632355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of vinegar industry wastewater by electrocoagulation with monopolar aluminum and iron electrodes and toxicity evaluation.
    Yılmaz S; Gerek EE; Yavuz Y; Koparal AS
    Water Sci Technol; 2018 Dec; 78(12):2542-2552. PubMed ID: 30767919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes.
    Emamjomeh MM; Sivakumar M
    J Environ Manage; 2009 Apr; 90(5):1663-79. PubMed ID: 19181438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrolytic removal of alizarin red S by Fe/Al composite hydrogel electrode for electrocoagulation toward a new wastewater treatment.
    Ma SS; Zhang YG
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22771-22782. PubMed ID: 27562812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.