These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32481519)

  • 21. Trained Immunity in
    Kulkarni A; Pandey A; Trainor P; Carlisle S; Chhilar JS; Yu W; Moon A; Xu J
    Front Microbiol; 2021; 12():649213. PubMed ID: 33995307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interorgan Molecular Communication Strategies of "Local" and "Systemic" Innate Immune Responses in Mosquito
    Das De T; Sharma P; Thomas T; Singla D; Tevatiya S; Kumari S; Chauhan C; Rani J; Srivastava V; Kaur R; Pandey KC; Dixit R
    Front Immunol; 2018; 9():148. PubMed ID: 29515567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Current malaria situation in the Republic of Kazakhstan].
    Bismil'din FB; Shapieva ZhZh; Anpilova EN
    Med Parazitol (Mosk); 2001; (1):24-33. PubMed ID: 11548308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phagocytosis in mosquito immune responses.
    Blandin SA; Levashina EA
    Immunol Rev; 2007 Oct; 219():8-16. PubMed ID: 17850478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mosquito Midgut Prostaglandin Release Establishes Systemic Immune Priming.
    Barletta ABF; Trisnadi N; Ramirez JL; Barillas-Mury C
    iScience; 2019 Sep; 19():54-62. PubMed ID: 31351392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low prevalence of Plasmodium and absence of malaria transmission in Conakry, Guinea: prospects for elimination.
    Kouassi BL; de Souza DK; Goepogui A; Balde SM; Diakité L; Sagno A; Djameh GI; Chammartin F; Vounatsou P; Bockarie MJ; Utzinger J; Koudou BG
    Malar J; 2016 Mar; 15():175. PubMed ID: 26987480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silencing Transglutaminase Genes
    Ramakrishnan A; Hillyer JF
    Insects; 2022 Jun; 13(7):. PubMed ID: 35886758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The immune and circulatory systems are functionally integrated across insect evolution.
    Yan Y; Hillyer JF
    Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33239286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.
    Richman AM; Dimopoulos G; Seeley D; Kafatos FC
    EMBO J; 1997 Oct; 16(20):6114-9. PubMed ID: 9321391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae.
    Smith RC; Barillas-Mury C; Jacobs-Lorena M
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):E3412-20. PubMed ID: 26080400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemocytome: deep sequencing analysis of mosquito blood cells in Indian malarial vector Anopheles stephensi.
    Thomas T; De TD; Sharma P; Lata S; Saraswat P; Pandey KC; Dixit R
    Gene; 2016 Jul; 585(2):177-90. PubMed ID: 26915489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resisting infection by Plasmodium berghei increases the sensitivity of the malaria vector Anopheles gambiae to DDT.
    Saddler A; Burda PC; Koella JC
    Malar J; 2015 Mar; 14():134. PubMed ID: 25888982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the different functions of multiple peptidoglycan recognition proteins in the immune response against bacteria in the mosquito, Armigeres subalbatus.
    Wang S; Beerntsen BT
    Insect Biochem Mol Biol; 2013 Jun; 43(6):533-43. PubMed ID: 23541606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmodium berghei induced priming in Anopheles albimanus independently of bacterial co-infection.
    Contreras-Garduño J; Rodríguez MC; Hernández-Martínez S; Martínez-Barnetche J; Alvarado-Delgado A; Izquierdo J; Herrera-Ortiz A; Moreno-García M; Velazquez-Meza ME; Valverde V; Argotte-Ramos R; Rodríguez MH; Lanz-Mendoza H
    Dev Comp Immunol; 2015 Oct; 52(2):172-81. PubMed ID: 26004500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti.
    Hillyer JF; Schmidt SL; Christensen BM
    J Parasitol; 2003 Feb; 89(1):62-9. PubMed ID: 12659304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of infection by Plasmodium falciparum on the melanization immune response of Anopheles gambiae.
    Lambrechts L; Morlais I; Awono-Ambene PH; Cohuet A; Simard F; Jacques JC; Bourgouin C; Koella JC
    Am J Trop Med Hyg; 2007 Mar; 76(3):475-80. PubMed ID: 17360870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of environmental variables and kdr resistance genotype on survival probability and infection rates in Anopheles gambiae (s.s.).
    Kristan M; Abeku TA; Lines J
    Parasit Vectors; 2018 Oct; 11(1):560. PubMed ID: 30367663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Influence of Age on the Susceptibility of Anopheles stephensi to Plasmodium berghei Infection].
    Song XM; Wang JW
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2016 Dec; 34(6):508-12. PubMed ID: 30141604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria.
    Hillyer JF; Schmidt SL; Christensen BM
    Cell Tissue Res; 2003 Jul; 313(1):117-27. PubMed ID: 12838409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early biting of the Anopheles gambiae s.s. and its challenges to vector control using insecticide treated nets in western Kenya highlands.
    Wamae PM; Githeko AK; Otieno GO; Kabiru EW; Duombia SO
    Acta Trop; 2015 Oct; 150():136-42. PubMed ID: 26209103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.