These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32481750)

  • 1. Comparative Analysis of Fatigue EnergyCharacteristics of S355J2 Steel Subjected toMulti-Axis Loads.
    Lachowicz CT; Owsiński R
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Fatigue Crack Growth in Long-Term Operated Mild Steel under Mixed-Mode (I + II, I + III) Loading Conditions.
    Lesiuk G; Smolnicki M; Rozumek D; Krechkovska H; Student O; Correia J; Mech R; De Jesus A
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic Estimation of Fatigue Strength for Axial and Bending Loading in High-Cycle Fatigue.
    Tomaszewski T; Strzelecki P; Mazurkiewicz A; Musiał J
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32150873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic Tests of Smooth and Notched Specimens Subjected to Bending and Torsion Taking into Account the Effect of Mean Stress.
    Pawliczek R; Rozumek D
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profile and Areal Surface Parameters for Fatigue Fracture Characterisation.
    Macek W; Branco R; Szala M; Marciniak Z; Ulewicz R; Sczygiol N; Kardasz P
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low Cycle Fatigue Life Evaluation of Notched Specimens Considering Strain Gradient.
    Qin S; Xiong Z; Ma Y; Zhang K
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong-Frederick Kinematic Hardening Model.
    Pate SB; Dundulis G; Griskevicius P
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Validity of Selected Criteria of Fatigue Life Prediction.
    Kluger K; Pawliczek R
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31330994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Shear Stress Determination in Tubular Specimens under Torsion in the Elastic-Plastic Strain Range from the Perspective of Fatigue Analysis.
    Seyda J; Pejkowski Ł; Skibicki D
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33297541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elasto-Viscoplastic Material Model of a Directly-Cast Low-Carbon Steel at High Temperatures.
    Krobath M; Krobath R; Bernhard C; Ecker W
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading.
    Kluger K; Karolczuk A; Derda S
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain Conditions Monitoring on Corroded Prestressed Steel Strands in Beams Based on Fiber Bragg Grating Sensors.
    Fan GX; Lin FT; Li P; Han JG; Shang HS; Wang Y; Zheng H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties of Aluminum Alloys under Low-Cycle Fatigue Loading.
    Zhao X; Li H; Chen T; Cao B; Li X
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Crack Initiation Based on Energy Storage Rate during Low-Cycle Fatigue of Austenitic Stainless Steel.
    Grodzki W; Oliferuk W; Doroszko M; Szusta J; Urbański L
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determination of failure modes.
    Stambough JL; Genaidy AM; Huston RL; Serhan H; El-khatib F; Sabri EH
    J Spinal Disord; 1997 Dec; 10(6):473-81. PubMed ID: 9438811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited Stress Surface Model for Bending and Torsion Fatigue Loading with the Mean Load Value.
    Pawliczek R; Rozumek D
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a chewing simulator for fatigue testing of metal ceramic crowns.
    Heintze SD; Eser A; Monreal D; Rousson V
    J Mech Behav Biomed Mater; 2017 Jan; 65():770-780. PubMed ID: 27771595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injury mechanisms of the ligamentous cervical C2-C3 Functional Spinal Unit to complex loading modes: Finite Element study.
    Mustafy T; Moglo K; Adeeb S; El-Rich M
    J Mech Behav Biomed Mater; 2016 Jan; 53():384-396. PubMed ID: 26409229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Changes in Fatigue Damage Caused by Mean Load under Block Loading Conditions.
    Pawliczek R; Lagoda T
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34067334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.