These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32481756)

  • 1. Cortical Thickness and Natural Scene Recognition in the Child's Brain.
    Orliac F; Borst G; Simon G; Mevel K; Vidal J; Dollfus S; Houdé O; Peyrin C; Poirel N
    Brain Sci; 2020 May; 10(6):. PubMed ID: 32481756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-Related Differences in Spatial Frequency Processing during Scene Categorization.
    Ramanoël S; Kauffmann L; Cousin E; Dojat M; Peyrin C
    PLoS One; 2015; 10(8):e0134554. PubMed ID: 26288146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial frequency processing in scene-selective cortical regions.
    Kauffmann L; Ramanoël S; Guyader N; Chauvin A; Peyrin C
    Neuroimage; 2015 May; 112():86-95. PubMed ID: 25754068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study.
    Peyrin C; Baciu M; Segebarth C; Marendaz C
    Neuroimage; 2004 Oct; 23(2):698-707. PubMed ID: 15488419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neural bases of spatial frequency processing during scene perception.
    Kauffmann L; Ramanoël S; Peyrin C
    Front Integr Neurosci; 2014; 8():37. PubMed ID: 24847226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Neural Bases of the Semantic Interference of Spatial Frequency-based Information in Scenes.
    Kauffmann L; Bourgin J; Guyader N; Peyrin C
    J Cogn Neurosci; 2015 Dec; 27(12):2394-405. PubMed ID: 26244724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization.
    Musel B; Bordier C; Dojat M; Pichat C; Chokron S; Le Bas JF; Peyrin C
    J Cogn Neurosci; 2013 Aug; 25(8):1315-31. PubMed ID: 23574583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study.
    Kauffmann L; Chauvin A; Pichat C; Peyrin C
    Brain Cogn; 2015 Oct; 99():46-56. PubMed ID: 26232267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization.
    Musel B; Hera R; Chokron S; Alleysson D; Chiquet C; Romanet JP; Guyader N; Peyrin C
    Vis Neurosci; 2011 Nov; 28(6):529-41. PubMed ID: 22192508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-to-fine categorization of visual scenes in scene-selective cortex.
    Musel B; Kauffmann L; Ramanoël S; Giavarini C; Guyader N; Chauvin A; Peyrin C
    J Cogn Neurosci; 2014 Oct; 26(10):2287-97. PubMed ID: 24738768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking changes in spatial frequency sensitivity during natural image processing in school age: an event-related potential study.
    Rokszin AA; Győri-Dani D; Bácsi J; Nyúl LG; Csifcsák G
    J Exp Child Psychol; 2018 Feb; 166():664-678. PubMed ID: 29128609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes.
    Peyrin C; Schwartz S; Seghier M; Michel C; Landis T; Vuilleumier P
    Neuroimage; 2005 Nov; 28(2):464-73. PubMed ID: 15993630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scene perception in age-related macular degeneration: Effect of spatial frequencies and contrast in residual vision.
    Peyrin C; Ramanoël S; Roux-Sibilon A; Chokron S; Hera R
    Vision Res; 2017 Jan; 130():36-47. PubMed ID: 27876510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of glaucoma on the spatial frequency processing of scenes in central vision.
    Trouilloud A; Ferry E; Boucart M; Kauffmann L; Warniez A; Rouland JF; Peyrin C
    Vis Neurosci; 2023 Feb; 40():E001. PubMed ID: 36752177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low spatial frequency filtering modulates early brain processing of affective complex pictures.
    Alorda C; Serrano-Pedraza I; Campos-Bueno JJ; Sierra-Vázquez V; Montoya P
    Neuropsychologia; 2007 Nov; 45(14):3223-33. PubMed ID: 17681356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Predictive Role of Low Spatial Frequencies in Automatic Face Processing: A Visual Mismatch Negativity Investigation.
    Lacroix A; Harquel S; Mermillod M; Vercueil L; Alleysson D; Dutheil F; Kovarski K; Gomot M
    Front Hum Neurosci; 2022; 16():838454. PubMed ID: 35360280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.
    Revina Y; Petro LS; Muckli L
    Neuroimage; 2018 Oct; 180(Pt A):280-290. PubMed ID: 28951158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid scene categorization: role of spatial frequency order, accumulation mode and luminance contrast.
    Kauffmann L; Chauvin A; Guyader N; Peyrin C
    Vision Res; 2015 Feb; 107():49-57. PubMed ID: 25499838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Spatial Frequency Bias in Schizophrenia is Not Face Specific: When the Integration of Coarse and Fine Information Fails.
    Laprevote V; Oliva A; Ternois AS; Schwan R; Thomas P; Boucart M
    Front Psychol; 2013; 4():248. PubMed ID: 23653616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes: a combined fMRI and ERP study.
    Peyrin C; Michel CM; Schwartz S; Thut G; Seghier M; Landis T; Marendaz C; Vuilleumier P
    J Cogn Neurosci; 2010 Dec; 22(12):2768-80. PubMed ID: 20044901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.