BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32481996)

  • 1. A tissue engineering approach based on the use of bioceramics for bone repair.
    Salinas AJ; Esbrit P; Vallet-Regí M
    Biomater Sci; 2013 Jan; 1(1):40-51. PubMed ID: 32481996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promising trends of bioceramics in the biomaterials field.
    Arcos D; Izquierdo-Barba I; Vallet-Regí M
    J Mater Sci Mater Med; 2009 Feb; 20(2):447-55. PubMed ID: 18987955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery.
    Vallet-Regí M; Izquierdo-Barba I; Colilla M
    Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1400-21. PubMed ID: 22349248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering.
    Baino F; Novajra G; Vitale-Brovarone C
    Front Bioeng Biotechnol; 2015; 3():202. PubMed ID: 26734605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioceramics for Osteochondral Tissue Engineering and Regeneration.
    Pina S; Rebelo R; Correlo VM; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1058():53-75. PubMed ID: 29691817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances.
    Baino F; Fiorilli S; Vitale-Brovarone C
    Acta Biomater; 2016 Sep; 42():18-32. PubMed ID: 27370907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of 3D Scaffolds for Hard Tissue Engineering: From Apatites to Silicon Mesoporous Materials.
    García A; Cabañas MV; Peña J; Sánchez-Salcedo S
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenic Effect of ZnO-Mesoporous Glasses Loaded with Osteostatin.
    Pérez R; Sanchez-Salcedo S; Lozano D; Heras C; Esbrit P; Vallet-Regí M; Salinas AJ
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30081542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive Materials for Soft Tissue Repair.
    Mazzoni E; Iaquinta MR; Lanzillotti C; Mazziotta C; Maritati M; Montesi M; Sprio S; Tampieri A; Tognon M; Martini F
    Front Bioeng Biotechnol; 2021; 9():613787. PubMed ID: 33681157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration.
    Millan C; Vivanco JF; Benjumeda-Wijnhoven IM; Bjelica S; Santibanez JF
    Adv Exp Med Biol; 2018; 1107():91-112. PubMed ID: 30105601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects.
    Qi X; Wang H; Zhang Y; Pang L; Xiao W; Jia W; Zhao S; Wang D; Huang W; Wang Q
    Int J Biol Sci; 2018; 14(4):471-484. PubMed ID: 29725268
    [No Abstract]   [Full Text] [Related]  

  • 18. Macroporous bioceramics: a remarkable material for bone regeneration.
    Lew KS; Othman R; Ishikawa K; Yeoh FY
    J Biomater Appl; 2012 Sep; 27(3):345-58. PubMed ID: 21862511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.
    Shadjou N; Hasanzadeh M
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():401-9. PubMed ID: 26117771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration.
    Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.