These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32482016)

  • 1. Viscoelastic hydrogels from poly(vinyl alcohol)-Fe(iii) complex.
    Mahanta N; Teow Y; Valiyaveettil S
    Biomater Sci; 2013 May; 1(5):519-527. PubMed ID: 32482016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels.
    Suzuki A; Sasaki S
    Proc Inst Mech Eng H; 2015 Dec; 229(12):828-44. PubMed ID: 26614797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible dialdehyde cellulose/poly(vinyl alcohol) hydrogels with tunable properties.
    Münster L; Capáková Z; Fišera M; Kuřitka I; Vícha J
    Carbohydr Polym; 2019 Aug; 218():333-342. PubMed ID: 31221338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.
    Liu Y; Geever LM; Kennedy JE; Higginbotham CL; Cahill PA; McGuinness GB
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):203-9. PubMed ID: 20129419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration.
    Lee SY; Pereira BP; Yusof N; Selvaratnam L; Yu Z; Abbas AA; Kamarul T
    Acta Biomater; 2009 Jul; 5(6):1919-25. PubMed ID: 19289306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application.
    Curley C; Hayes JC; Rowan NJ; Kennedy JE
    J Mech Behav Biomed Mater; 2014 Dec; 40():13-22. PubMed ID: 25190433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.
    Liu K; Ovaert TC
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):440-50. PubMed ID: 21316632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application.
    Islam A; Riaz M; Yasin T
    Int J Biol Macromol; 2013 Aug; 59():119-24. PubMed ID: 23608101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.
    Blum MM; Ovaert TC
    J Mech Behav Biomed Mater; 2012 Oct; 14():248-58. PubMed ID: 22947923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally Tunable Dynamic and Static Elastic Properties of Hydrogel Due to Volumetric Phase Transition.
    Jin Y; Yang T; Ju S; Zhang H; Choi TY; Neogi A
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32629821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering.
    Martens PJ; Bryant SJ; Anseth KS
    Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How can multi-bond network hydrogels dissipate energy more effectively: an investigation on the relationship between network structure and properties.
    Xu H; Shi FK; Liu XY; Zhong M; Xie XM
    Soft Matter; 2020 May; 16(18):4407-4413. PubMed ID: 32323693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(Vinyl Alcohol)/Bovine Serum Albumin Hybrid Hydrogels with Tunable Mechanical Properties.
    Bercea M; Plugariu IA; Dinu MV; Pelin IM; Lupu A; Bele A; Gradinaru VR
    Polymers (Basel); 2023 Dec; 15(23):. PubMed ID: 38232047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator.
    Huang M; Hou Y; Li Y; Wang D; Zhang L
    Des Monomers Polym; 2017; 20(1):505-513. PubMed ID: 29491822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradable, click poly(vinyl alcohol) hydrogels: characterization of degradation and cellular compatibility.
    Alves MH; Young CJ; Bozzetto K; Poole-Warren LA; Martens PJ
    Biomed Mater; 2012 Apr; 7(2):024106. PubMed ID: 22456869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and performance characteristics of tough hydrogel scaffolds based on biocompatible polymers.
    Islam A; Yasin T; Gull N; Khan SM; Sabir A; Munawwar MA; Shafiq M; Jamil T; Raza MH
    Int J Biol Macromol; 2016 Nov; 92():1-10. PubMed ID: 27387014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of selected properties of biocompatible chitosan/poly(vinyl alcohol) blends.
    Islam A; Yasin T; Gull N; Khan SM; Munawar MA; Shafiq M; Sabir A; Jamil T
    Int J Biol Macromol; 2016 Jan; 82():551-6. PubMed ID: 26434521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 'degradable' poly(vinyl alcohol) iron oxide nanoparticle hydrogel.
    Bannerman AD; Li X; Wan W
    Acta Biomater; 2017 Aug; 58():376-385. PubMed ID: 28499634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.
    Peng F; Guan Y; Zhang B; Bian J; Ren JL; Yao CL; Sun RC
    Int J Biol Macromol; 2014 Apr; 65():564-72. PubMed ID: 24530334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Monomer, Crosslinking Agent, and Filler Concentrations on the Viscoelastic and Swelling Properties of Poly(methacrylic acid) Hydrogels: A Comparison.
    Ninciuleanu CM; Ianchiş R; Alexandrescu E; Mihăescu CI; Scomoroşcenco C; Nistor CL; Preda S; Petcu C; Teodorescu M
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.