These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 32482432)
1. Quantifying Lumbar Mobilization With Inertial Measurement Unit. Mehyar F; Wilson SE; Staggs VS; Aoyagi K; Sharma NK J Manipulative Physiol Ther; 2020 Feb; 43(2):114-122. PubMed ID: 32482432 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device-A Validation Study. Rigoni M; Gill S; Babazadeh S; Elsewaisy O; Gillies H; Nguyen N; Pathirana PN; Page R Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013931 [TBL] [Abstract][Full Text] [Related]
3. Reliability and validity of estimated angles information assessed using inertial measurement unit-based motion sensors. Morikawa T; Mura N; Sato T; Katoh H Biomed Mater Eng; 2024; 35(5):439-450. PubMed ID: 39031336 [TBL] [Abstract][Full Text] [Related]
4. Validity and reliability of a sensor-based electronic spinal mobility index for axial spondyloarthritis. Gardiner PV; Small D; Muñoz-Esquivel K; Condell J; Cuesta-Vargas A; Williams J; Machado PM; Garrido-Castro JL Rheumatology (Oxford); 2020 Nov; 59(11):3415-3423. PubMed ID: 32342100 [TBL] [Abstract][Full Text] [Related]
5. Inter and intra-rater reliability of mobile device goniometer in measuring lumbar flexion range of motion. Bedekar N; Suryawanshi M; Rairikar S; Sancheti P; Shyam A J Back Musculoskelet Rehabil; 2014; 27(2):161-6. PubMed ID: 24029833 [TBL] [Abstract][Full Text] [Related]
6. Reliability and validity of the Microgate Gyko for measuring range of motion of the low back. Hamersma DT; Hofste A; Rijken NHM; Roe Of Rohé M; Oosterveld FGJ; Soer R Musculoskelet Sci Pract; 2020 Feb; 45():102091. PubMed ID: 31735439 [TBL] [Abstract][Full Text] [Related]
7. Validity and Reliability of Inertial Measurement Units in Active Range of Motion Assessment in the Hip Joint. Stołowski Ł; Niedziela M; Lubiatowski B; Lubiatowski P; Piontek T Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960493 [TBL] [Abstract][Full Text] [Related]
8. Validity and Reliability of an Inertial Measurement Unit-based 3-Dimensional Angular Measurement of Cervical Range of Motion. Yoon TL; Kim HN; Min JH J Manipulative Physiol Ther; 2019 Jan; 42(1):75-81. PubMed ID: 31054596 [TBL] [Abstract][Full Text] [Related]
9. Shoulder Range of Motion Measurement Using Inertial Measurement Unit-Concurrent Validity and Reliability. Kaszyński J; Baka C; Białecka M; Lubiatowski P Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687955 [TBL] [Abstract][Full Text] [Related]
10. Within/between-session reliability and agreement of lumbopelvic kinematics in the sagittal plane during functional movement control tasks in healthy persons. Matheve T; De Baets L; Rast F; Bauer C; Timmermans A Musculoskelet Sci Pract; 2018 Feb; 33():90-98. PubMed ID: 28844565 [TBL] [Abstract][Full Text] [Related]
11. Validity and reliability of inertial measurement units used to measure motion of the lumbar spine: A systematic review of individuals with and without low back pain. McClintock FA; Callaway AJ; Clark CJ; Williams JM Med Eng Phys; 2024 Apr; 126():104146. PubMed ID: 38621847 [TBL] [Abstract][Full Text] [Related]
12. Reliability of lumbar movement dysfunction tests for chronic low back pain patients. Bauer CM; Heimgartner M; Rast FM; Ernst MJ; Oetiker S; Kool J Man Ther; 2016 Aug; 24():81-4. PubMed ID: 26980560 [TBL] [Abstract][Full Text] [Related]
13. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study. Berner K; Cockcroft J; Louw Q Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239 [TBL] [Abstract][Full Text] [Related]
14. Visual and instrumental diagnostics using chromokinegraphics: Reliability and validity for low back pain stratification. Giesche F; Krause F; Niederer D; Wilke J; Engeroff T; Vogt L; Banzer W J Back Musculoskelet Rehabil; 2019; 32(2):345-353. PubMed ID: 30412482 [TBL] [Abstract][Full Text] [Related]
15. A comparison of instrumentation methods to estimate thoracolumbar motion in field-based occupational studies. Schall MC; Fethke NB; Chen H; Gerr F Appl Ergon; 2015 May; 48():224-31. PubMed ID: 25683549 [TBL] [Abstract][Full Text] [Related]
16. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. Melton C; Mullineaux DR; Mattacola CG; Mair SD; Uhl TL J Sport Rehabil; 2011 Nov; 20(4):393-405. PubMed ID: 22012494 [TBL] [Abstract][Full Text] [Related]
17. Reliability of computer-assisted lumbar intervertebral measurements using a novel vertebral motion analysis system. Yeager MS; Cook DJ; Cheng BC Spine J; 2014 Feb; 14(2):274-81. PubMed ID: 24239805 [TBL] [Abstract][Full Text] [Related]
18. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration. Berner K; Cockcroft J; Morris LD; Louw Q J Bodyw Mov Ther; 2020 Oct; 24(4):251-260. PubMed ID: 33218520 [TBL] [Abstract][Full Text] [Related]
19. Reliability and criterion validity of the "Gyroscope" application of the iPod™ for measuring lumbar range of motion. Boudreau N; Brochu FO; Dubreuil LM; Laurendeau T; Leblanc O; De Vette E; Tousignant-Laflamme Y J Back Musculoskelet Rehabil; 2020; 33(4):685-692. PubMed ID: 31658035 [TBL] [Abstract][Full Text] [Related]
20. Validity and Reliability of Inertial Measurement Unit (IMU)-Derived 3D Joint Kinematics in Persons Wearing Transtibial Prosthesis. Rattanakoch J; Samala M; Limroongreungrat W; Guerra G; Tharawadeepimuk K; Nanbancha A; Niamsang W; Kerdsomnuek P; Suwanmana S Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]