These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 32483131)
1. An evolutionary path to altered cofactor specificity in a metalloenzyme. Barwinska-Sendra A; Garcia YM; Sendra KM; Baslé A; Mackenzie ES; Tarrant E; Card P; Tabares LC; Bicep C; Un S; Kehl-Fie TE; Waldron KJ Nat Commun; 2020 Jun; 11(1):2738. PubMed ID: 32483131 [TBL] [Abstract][Full Text] [Related]
2. Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein. Griese JJ; Roos K; Cox N; Shafaat HS; Branca RM; Lehtiö J; Gräslund A; Lubitz W; Siegbahn PE; Högbom M Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17189-94. PubMed ID: 24101498 [TBL] [Abstract][Full Text] [Related]
3. A charge polarization model for the metal-specific activity of superoxide dismutases. Barwinska-Sendra A; Baslé A; Waldron KJ; Un S Phys Chem Chem Phys; 2018 Jan; 20(4):2363-2372. PubMed ID: 29308487 [TBL] [Abstract][Full Text] [Related]
4. Comparative studies on a superoxide dismutase exhibiting enzymatic activity with iron and manganese as active cofactor. Meier B Free Radic Res Commun; 1991; 12-13 Pt 1():211-4. PubMed ID: 1649091 [TBL] [Abstract][Full Text] [Related]
5. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Cotruvo JA; Stubbe J Metallomics; 2012 Oct; 4(10):1020-36. PubMed ID: 22991063 [TBL] [Abstract][Full Text] [Related]
6. The mismetallation of enzymes during oxidative stress. Imlay JA J Biol Chem; 2014 Oct; 289(41):28121-8. PubMed ID: 25160623 [TBL] [Abstract][Full Text] [Related]
7. Pronounced conversion of the metal-specific activity of superoxide dismutase from Porphyromonas gingivalis by the mutation of a single amino acid (Gly155Thr) located apart from the active site. Yamakura F; Sugio S; Hiraoka BY; Ohmori D; Yokota T Biochemistry; 2003 Sep; 42(36):10790-9. PubMed ID: 12962504 [TBL] [Abstract][Full Text] [Related]
8. Characterization of ancestral Fe/Mn superoxide dismutases indicates their cambialistic origin. Valenti R; Jabłońska J; Tawfik DS Protein Sci; 2022 Oct; 31(10):e4423. PubMed ID: 36173172 [TBL] [Abstract][Full Text] [Related]
9. Key Structural Motifs Balance Metal Binding and Oxidative Reactivity in a Heterobimetallic Mn/Fe Protein. Kisgeropoulos EC; Griese JJ; Smith ZR; Branca RMM; Schneider CR; Högbom M; Shafaat HS J Am Chem Soc; 2020 Mar; 142(11):5338-5354. PubMed ID: 32062969 [TBL] [Abstract][Full Text] [Related]
10. A change of the metal-specific activity of a cambialistic superoxide dismutase from Porphyromonas gingivalis by a double mutation of Gln-70 to Gly and Ala-142 to Gln. Hiraoka BY; Yamakura F; Sugio S; Nakayama K Biochem J; 2000 Jan; 345 Pt 2(Pt 2):345-50. PubMed ID: 10620511 [TBL] [Abstract][Full Text] [Related]
11. Thermophilic iron containing type superoxide dismutase from Cohnella sp. A01. Shahi ZKM; Takalloo Z; Mohamadzadeh J; Sajedi RH; Haghbeen K; Aminzadeh S Int J Biol Macromol; 2021 Sep; 187():373-385. PubMed ID: 34329665 [TBL] [Abstract][Full Text] [Related]
12. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi. Aguirre JD; Clark HM; McIlvin M; Vazquez C; Palmere SL; Grab DJ; Seshu J; Hart PJ; Saito M; Culotta VC J Biol Chem; 2013 Mar; 288(12):8468-8478. PubMed ID: 23376276 [TBL] [Abstract][Full Text] [Related]
13. Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family. Frye KA; Sendra KM; Waldron KJ; Kehl-Fie TE J Inorg Biochem; 2022 May; 230():111748. PubMed ID: 35151099 [TBL] [Abstract][Full Text] [Related]
14. A Single Mutation is Sufficient to Modify the Metal Selectivity and Specificity of a Eukaryotic Manganese Superoxide Dismutase to Encompass Iron. Hunter T; Bonetta R; Sacco A; Vella M; Sultana PM; Trinh CH; Fadia HBR; Borowski T; Garcia-Fandiño R; Stockner T; Hunter GJ Chemistry; 2018 Apr; 24(20):5303-5308. PubMed ID: 29178484 [TBL] [Abstract][Full Text] [Related]
15. Understanding the influence of the protein environment on the Mn(II) centers in Superoxide Dismutases using High-Field Electron Paramagnetic Resonance. Tabares LC; Gätjens J; Un S Biochim Biophys Acta; 2010 Feb; 1804(2):308-17. PubMed ID: 19818880 [TBL] [Abstract][Full Text] [Related]
16. The single superoxide dismutase of Rhodobacter capsulatus is a cambialistic, manganese-containing enzyme. Tabares LC; Bittel C; Carrillo N; Bortolotti A; Cortez N J Bacteriol; 2003 May; 185(10):3223-7. PubMed ID: 12730184 [TBL] [Abstract][Full Text] [Related]
17. Superoxide dismutases-a review of the metal-associated mechanistic variations. Abreu IA; Cabelli DE Biochim Biophys Acta; 2010 Feb; 1804(2):263-74. PubMed ID: 19914406 [TBL] [Abstract][Full Text] [Related]
18. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. Griese JJ; Srinivas V; Högbom M J Biol Inorg Chem; 2014 Aug; 19(6):759-74. PubMed ID: 24771036 [TBL] [Abstract][Full Text] [Related]
19. Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin. Troxell B; Xu H; Yang XF J Biol Chem; 2012 Jun; 287(23):19284-93. PubMed ID: 22500025 [TBL] [Abstract][Full Text] [Related]
20. Metal preferences and metallation. Foster AW; Osman D; Robinson NJ J Biol Chem; 2014 Oct; 289(41):28095-103. PubMed ID: 25160626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]