These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32483155)

  • 1. Glycan-dependent cell adhesion mechanism of Tc toxins.
    Roderer D; Bröcker F; Sitsel O; Kaplonek P; Leidreiter F; Seeberger PH; Raunser S
    Nat Commun; 2020 Jun; 11(1):2694. PubMed ID: 32483155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A syringe-like injection mechanism in Photorhabdus luminescens toxins.
    Gatsogiannis C; Lang AE; Meusch D; Pfaumann V; Hofnagel O; Benz R; Aktories K; Raunser S
    Nature; 2013 Mar; 495(7442):520-3. PubMed ID: 23515159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Glycans and sulfated glycosaminoglycans contribute to the action of diverse Tc toxins on mammalian cells.
    Song N; Chen L; Ren X; Waterfield NR; Yang J; Yang G
    PLoS Pathog; 2021 Feb; 17(2):e1009244. PubMed ID: 33539469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a Tc holotoxin pore provides insights into the translocation mechanism.
    Roderer D; Hofnagel O; Benz R; Raunser S
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23083-23090. PubMed ID: 31666324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of N-glycans in binding of Photorhabdus luminescens Tc toxin.
    Ng'ang'a PN; Siukstaite L; Lang AE; Bakker H; Römer W; Aktories K; Schmidt G
    Cell Microbiol; 2021 Aug; 23(8):e13326. PubMed ID: 33720490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common architecture of Tc toxins from human and insect pathogenic bacteria.
    Leidreiter F; Roderer D; Meusch D; Gatsogiannis C; Benz R; Raunser S
    Sci Adv; 2019 Oct; 5(10):eaax6497. PubMed ID: 31663026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photorhabdus luminescens Tc toxin is inhibited by the protease inhibitor MG132 and activated by protease cleavage resulting in increased binding to target cells.
    Ost GS; Ng'ang'a PN; Lang AE; Aktories K
    Cell Microbiol; 2019 Mar; 21(3):e12978. PubMed ID: 30431706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insecticidal Toxin Complexes from Photorhabdus luminescens.
    Sheets J; Aktories K
    Curr Top Microbiol Immunol; 2017; 402():3-23. PubMed ID: 28233068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Tc toxin action revealed in molecular detail.
    Meusch D; Gatsogiannis C; Efremov RG; Lang AE; Hofnagel O; Vetter IR; Aktories K; Raunser S
    Nature; 2014 Apr; 508(7494):61-5. PubMed ID: 24572368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pdl1 is a putative lipase that enhances Photorhabdus toxin complex secretion.
    Yang G; Hernández-Rodríguez CS; Beeton ML; Wilkinson P; Ffrench-Constant RH; Waterfield NR
    PLoS Pathog; 2012; 8(5):e1002692. PubMed ID: 22615559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tc toxin activation requires unfolding and refolding of a β-propeller.
    Gatsogiannis C; Merino F; Roderer D; Balchin D; Schubert E; Kuhlee A; Hayer-Hartl M; Raunser S
    Nature; 2018 Nov; 563(7730):209-213. PubMed ID: 30232455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tc Toxin Complexes: Assembly, Membrane Permeation, and Protein Translocation.
    Roderer D; Raunser S
    Annu Rev Microbiol; 2019 Sep; 73():247-265. PubMed ID: 31140906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review.
    da Silva WJ; Pilz-Júnior HL; Heermann R; da Silva OS
    Parasit Vectors; 2020 Jul; 13(1):376. PubMed ID: 32727530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence.
    Ffrench-Constant RH; Waterfield N; Burland V; Perna NT; Daborn PJ; Bowen D; Blattner FR
    Appl Environ Microbiol; 2000 Aug; 66(8):3310-29. PubMed ID: 10919786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens.
    Aymeric JL; Givaudan A; Duvic B
    Mol Immunol; 2010 Aug; 47(14):2342-8. PubMed ID: 20627393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TcdA1 of Photorhabdus luminescens: electrophysiological analysis of pore formation and effector binding.
    Lang AE; Konukiewitz J; Aktories K; Benz R
    Biophys J; 2013 Jul; 105(2):376-84. PubMed ID: 23870259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photorhabdus luminescens toxins TccC3 and TccC5: insecticidal ADP-ribosyltransferases that modify threonine and glutamine.
    Aktories K; Schmidt G; Lang AE
    Curr Top Microbiol Immunol; 2015; 384():53-67. PubMed ID: 24908144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular plasma membrane guidance of Photorhabdus asymbiotica toxin is crucial for cell toxicity.
    Jank T; Trillhaase C; Brozda N; Steinemann M; Schwan C; Süss R; Aktories K
    FASEB J; 2015 Jul; 29(7):2789-802. PubMed ID: 25782990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterisation of the insecticidal toxin XptA1, reveals a 1.15 MDa tetramer with a cage-like structure.
    Lee SC; Stoilova-McPhie S; Baxter L; Fülöp V; Henderson J; Rodger A; Roper DI; Scott DJ; Smith CJ; Morgan JA
    J Mol Biol; 2007 Mar; 366(5):1558-68. PubMed ID: 17266984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a DNA microarray to investigate the distribution of insect virulence factors in strains of photorhabdus bacteria.
    Marokhazi J; Waterfield N; LeGoff G; Feil E; Stabler R; Hinds J; Fodor A; ffrench-Constant RH
    J Bacteriol; 2003 Aug; 185(15):4648-56. PubMed ID: 12867479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.