These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32483238)

  • 1. Repetitive sequences and structural chromosome alterations promote intraspecific variations in Zea mays L. karyotype.
    Silva JC; Soares FAF; Sattler MC; Clarindo WR
    Sci Rep; 2020 Jun; 10(1):8866. PubMed ID: 32483238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize.
    Kato A; Lamb JC; Birchler JA
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13554-9. PubMed ID: 15342909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Updating the maize karyotype by chromosome DNA sizing.
    Silva JC; Carvalho CR; Clarindo WR
    PLoS One; 2018; 13(1):e0190428. PubMed ID: 29293613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meiotic loss of the B chromosomes of maize is influenced by the B univalent co-orientation and the TR-1 knob constitution of the A chromosomes.
    González-Sánchez M; González-García M; Vega JM; Rosato M; Cuacos M; Puertas MJ
    Cytogenet Genome Res; 2007; 119(3-4):282-90. PubMed ID: 18253043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Karyotype of Zea luxurians and Z. mays subsp. mays using FISH/DAPI, and analysis of meiotic behavior of hybrids.
    González GE; Poggio L
    Genome; 2011 Jan; 54(1):26-32. PubMed ID: 21217803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping.
    Cai Z; Liu H; He Q; Pu M; Chen J; Lai J; Li X; Jin W
    BMC Genomics; 2014 Nov; 15(1):1025. PubMed ID: 25425126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution chromosome painting with repetitive and single-copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation.
    Du P; Li L; Liu H; Fu L; Qin L; Zhang Z; Cui C; Sun Z; Han S; Xu J; Dai X; Huang B; Dong W; Tang F; Zhuang L; Han Y; Qi Z; Zhang X
    BMC Plant Biol; 2018 Oct; 18(1):240. PubMed ID: 30333010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GISHGenomic in situ hybridization reveals cryptic genetic differences between maize and its putative wild progenitor Zea mays subsp. parviglumis.
    Gonzalez G; Confalonieri V; Comas C; Naranjo CA; Poggio L
    Genome; 2004 Oct; 47(5):947-53. PubMed ID: 15499408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and mapping of CL-repeat display markers on the maize B chromosome.
    Chien YL; Lin CY; Lo KL; Cheng YM
    Cytogenet Genome Res; 2014; 144(3):227-36. PubMed ID: 25612674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal chromosome identification system for maize and wild Zea species.
    Braz GT; do Vale Martins L; Zhang T; Albert PS; Birchler JA; Jiang J
    Chromosome Res; 2020 Jun; 28(2):183-194. PubMed ID: 32219602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct chromosomal distributions of highly repetitive sequences in maize.
    Lamb JC; Meyer JM; Corcoran B; Kato A; Han F; Birchler JA
    Chromosome Res; 2007; 15(1):33-49. PubMed ID: 17295125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The supernumerary B chromosome of maize: drive and genomic conflict.
    Birchler JA; Yang H
    Open Biol; 2021 Nov; 11(11):210197. PubMed ID: 34727722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meiotic drive of chromosomal knobs reshaped the maize genome.
    Buckler ES; Phelps-Durr TL; Buckler CS; Dawe RK; Doebley JF; Holtsford TP
    Genetics; 1999 Sep; 153(1):415-26. PubMed ID: 10471723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are cytological parameters of maize landraces (Zea mays ssp. mays) adapted along an altitudinal cline?
    Fourastié MF; Gottlieb AM; Poggio L; González GE
    J Plant Res; 2018 Mar; 131(2):285-296. PubMed ID: 29177755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of chromosomal karyotypes in maize and its relatives.
    Albert PS; Gao Z; Danilova TV; Birchler JA
    Cytogenet Genome Res; 2010 Jul; 129(1-3):6-16. PubMed ID: 20551613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical organization of repetitive sequences and chromosome diversity of barley revealed by fluorescence in situ hybridization (FISH).
    Zhang S; Zhu M; Shang Y; Wang J; Dawadundup ; Zhuang L; Zhang J; Chu C; Qi Z
    Genome; 2019 May; 62(5):329-339. PubMed ID: 30933665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of chromosomal DNA contents in maize (Zea mays L.) inbred and hybrid lines.
    Lee JH; Arumuganathan K; Kaeppler SM; Park SW; Kim KY; Chung YS; Kim DH; Fukui K
    Planta; 2002 Aug; 215(4):666-71. PubMed ID: 12172850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae): emphasis in the organization of repetitive DNA sequences.
    Gomes de Oliveira S; Cassia de Moura R; Martins C
    BMC Genet; 2012 Nov; 13():96. PubMed ID: 23131070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.).
    Huang W; Du Y; Zhao X; Jin W
    BMC Plant Biol; 2016 Apr; 16():88. PubMed ID: 27083560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships.
    Zhao X; Lu J; Zhang Z; Hu J; Huang S; Jin W
    J Genet Genomics; 2011 Jan; 38(1):39-45. PubMed ID: 21338951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.