These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32483281)
41. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. Sun P; Mao Y; Li G; Cao M; Kong F; Wang L; Bi G BMC Genomics; 2015 Jun; 16(1):463. PubMed ID: 26081586 [TBL] [Abstract][Full Text] [Related]
42. Composition and Biosynthesis of Scent Compounds from Sterile Flowers of an Ornamental Plant Jiang Y; Qian R; Zhang W; Wei G; Ma X; Zheng J; Köllner TG; Chen F Molecules; 2020 Apr; 25(7):. PubMed ID: 32276485 [No Abstract] [Full Text] [Related]
43. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10. Guo XL; Yuan SN; Zhang HN; Zhang YY; Zhang YJ; Wang GY; Li YQ; Li GL BMC Plant Biol; 2020 Aug; 20(1):364. PubMed ID: 32746866 [TBL] [Abstract][Full Text] [Related]
44. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium. Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q; Gao Y BMC Genomics; 2016 May; 17():398. PubMed ID: 27225275 [TBL] [Abstract][Full Text] [Related]
45. Integrated analysis of co-expression, conserved genes and gene families reveal core regulatory network of heat stress response in Cleistogenes songorica, a xerophyte perennial desert plant. Yan Q; Zong X; Wu F; Li J; Ma T; Zhao Y; Ma Q; Wang P; Wang Y; Zhang J BMC Genomics; 2020 Oct; 21(1):715. PubMed ID: 33066732 [TBL] [Abstract][Full Text] [Related]
46. Combined transcriptome and proteome analysis provides insights into anthocyanin accumulation in the leaves of red-leaved poplars. Chen X; Liu H; Wang S; Zhang C; Liu L; Yang M; Zhang J Plant Mol Biol; 2021 Aug; 106(6):491-503. PubMed ID: 34165673 [TBL] [Abstract][Full Text] [Related]
47. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Lee JH; Schöffl F Mol Gen Genet; 1996 Aug; 252(1-2):11-9. PubMed ID: 8804399 [TBL] [Abstract][Full Text] [Related]
48. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. Volkov RA; Panchuk II; Schöffl F J Exp Bot; 2003 Oct; 54(391):2343-9. PubMed ID: 14504302 [TBL] [Abstract][Full Text] [Related]
49. Transcriptomic and proteomic analyses provide new insights into the regulation mechanism of low-temperature-induced leafy head formation in Chinese cabbage. Zhang CW; Wei YP; Xiao D; Gao LW; Lyu SW; Hou XL; Bouuema G J Proteomics; 2016 Jul; 144():1-10. PubMed ID: 27216644 [TBL] [Abstract][Full Text] [Related]
50. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
51. Transcriptome profiling reveals the association of multiple genes and pathways contributing to hormonal control in celery leaves. Liu J; Feng K; Hou X; Li H; Wang G; Xu Z; Xiong A Acta Biochim Biophys Sin (Shanghai); 2019 May; 51(5):524-534. PubMed ID: 30939194 [TBL] [Abstract][Full Text] [Related]
52. SlCathB2 as a negative regulator mediates a novel regulatory pathway upon high-temperature stress response in tomato. Wen J; Zhou R; Jiang F; Chen Z; Sun M; Li H; Wu Z Physiol Plant; 2024; 176(2):e14267. PubMed ID: 38566236 [TBL] [Abstract][Full Text] [Related]
53. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.). Rana RM; Dong S; Tang H; Ahmad F; Zhang H J Exp Bot; 2012 Oct; 63(16):6003-16. PubMed ID: 22996677 [TBL] [Abstract][Full Text] [Related]
54. Patterns of gene expression in pollen of cotton (Gossypium hirsutum) indicate downregulation as a feature of thermotolerance. Masoomi-Aladizgeh F; McKay MJ; Asar Y; Haynes PA; Atwell BJ Plant J; 2022 Feb; 109(4):965-979. PubMed ID: 34837283 [TBL] [Abstract][Full Text] [Related]
55. Comparative proteomic profiles of Pinus monticola needles during early compatible and incompatible interactions with Cronartium ribicola. Zamany A; Liu JJ; Ekramoddoullah AK Planta; 2012 Dec; 236(6):1725-46. PubMed ID: 22868574 [TBL] [Abstract][Full Text] [Related]
56. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Fragkostefanakis S; Simm S; Paul P; Bublak D; Scharf KD; Schleiff E Plant Cell Environ; 2015 Apr; 38(4):693-709. PubMed ID: 25124075 [TBL] [Abstract][Full Text] [Related]
57. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. Du C; Jiang J; Zhang H; Zhao T; Yang H; Zhang D; Zhao Z; Xu X; Li J BMC Genomics; 2020 Mar; 21(1):250. PubMed ID: 32293256 [TBL] [Abstract][Full Text] [Related]
58. Enhanced metabolic process to indole alkaloids in Clematis terniflora DC. after exposure to high level of UV-B irradiation followed by the dark. Gao C; Yang B; Zhang D; Chen M; Tian J BMC Plant Biol; 2016 Oct; 16(1):231. PubMed ID: 27776479 [TBL] [Abstract][Full Text] [Related]
59. Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects. Liu Y; Su H; Li R; Li X; Xu Y; Dai X; Zhou Y; Wang H BMC Genomics; 2017 Dec; 18(1):974. PubMed ID: 29258441 [TBL] [Abstract][Full Text] [Related]
60. Melatonin improves heat tolerance in Actinidia deliciosa via carotenoid biosynthesis and heat shock proteins expression. Xia H; Zhou Y; Deng H; Lin L; Deng Q; Wang J; Lv X; Zhang X; Liang D Physiol Plant; 2021 Jul; 172(3):1582-1593. PubMed ID: 33511650 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]