BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32483394)

  • 1. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid finite difference/finite element immersed boundary method.
    Griffith BE; Luo X
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.
    Griffith BE
    Int J Numer Method Biomed Eng; 2012 Mar; 28(3):317-45. PubMed ID: 25830200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity.
    Karabelas E; Gsell MAF; Haase G; Plank G; Augustin CM
    Comput Methods Appl Mech Eng; 2022 May; 394():114887. PubMed ID: 35432634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immersed Methods for Fluid-Structure Interaction.
    Griffith BE; Patankar NA
    Annu Rev Fluid Mech; 2020; 52():421-448. PubMed ID: 33012877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
    Kolahdouz EM; Bhalla APS; Scotten LN; Craven BA; Griffith BE
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34149063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Immersed Boundary method with divergence-free velocity interpolation and force spreading.
    Bao Y; Donev A; Griffith BE; McQueen DM; Peskin CS
    J Comput Phys; 2017 Oct; 347():183-206. PubMed ID: 31595090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
    Kamensky D; Hsu MC; Schillinger D; Evans JA; Aggarwal A; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Methods Appl Mech Eng; 2015 Feb; 284():1005-1053. PubMed ID: 25541566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics.
    Hadjicharalambous M; Lee J; Smith NP; Nordsletten DA
    Comput Methods Appl Mech Eng; 2014 Jun; 274(100):213-236. PubMed ID: 25187672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction.
    Liu J; Marsden AL
    Comput Methods Appl Mech Eng; 2018 Aug; 337():549-597. PubMed ID: 30505038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Nodal Immersed Finite Element-Finite Difference Method.
    Wells D; Vadala-Roth B; Lee JH; Griffith BE
    J Comput Phys; 2023 Mar; 477():. PubMed ID: 37007629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Immersed Interface Method for Discrete Surfaces.
    Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE
    J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unified three-dimensional finite elements for large strain analysis of compressible and nearly incompressible solids.
    Pagani A; Chiaia P; Filippi M; Cinefra M
    Mech Adv Mat Struct; 2024; 31(1):117-137. PubMed ID: 38235485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile stabilized finite element formulations for nearly and fully incompressible solid mechanics.
    Karabelas E; Haase G; Plank G; Augustin CM
    Comput Mech; 2020 Jan; 65(1):193-215. PubMed ID: 31975744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A continuum mechanics-based musculo-mechanical model for esophageal transport.
    Kou W; Griffith BE; Pandolfino JE; Kahrilas PJ; Patankar NA
    J Comput Phys; 2017 Oct; 348():433-459. PubMed ID: 29081541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.