These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 32483451)
1. Advanced biomimetic nanoreactor for specifically killing tumor cells through multi-enzyme cascade. Liu W; Wu J; Ji X; Ma Y; Liu L; Zong X; Yang H; Dai J; Chen X; Xue W Theranostics; 2020; 10(14):6245-6260. PubMed ID: 32483451 [TBL] [Abstract][Full Text] [Related]
2. Promoting Oxidative Stress in Cancer Starvation Therapy by Site-Specific Startup of Hyaluronic Acid-Enveloped Dual-Catalytic Nanoreactors. Yao Z; Zhang B; Liang T; Ding J; Min Q; Zhu JJ ACS Appl Mater Interfaces; 2019 May; 11(21):18995-19005. PubMed ID: 31058483 [TBL] [Abstract][Full Text] [Related]
3. Tumor-Specific Expansion of Oxidative Stress by Glutathione Depletion and Use of a Fenton Nanoagent for Enhanced Chemodynamic Therapy. Chen Q; Zhou J; Chen Z; Luo Q; Xu J; Song G ACS Appl Mater Interfaces; 2019 Aug; 11(34):30551-30565. PubMed ID: 31397998 [TBL] [Abstract][Full Text] [Related]
4. Erythrocyte Membrane Cloaked Metal-Organic Framework Nanoparticle as Biomimetic Nanoreactor for Starvation-Activated Colon Cancer Therapy. Zhang L; Wang Z; Zhang Y; Cao F; Dong K; Ren J; Qu X ACS Nano; 2018 Oct; 12(10):10201-10211. PubMed ID: 30265804 [TBL] [Abstract][Full Text] [Related]
5. Effect of Anoectochilus roxburghii flavonoids extract on H Wang L; Chen Q; Zhuang S; Wen Y; Cheng W; Zeng Z; Jiang T; Tang C J Ethnopharmacol; 2020 May; 254():112670. PubMed ID: 32135242 [TBL] [Abstract][Full Text] [Related]
6. Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS-responsive drug release. Yin W; Ke W; Chen W; Xi L; Zhou Q; Mukerabigwi JF; Ge Z Biomaterials; 2019 Mar; 195():63-74. PubMed ID: 30612064 [TBL] [Abstract][Full Text] [Related]
7. Rational design of non-toxic GOx-based biocatalytic nanoreactor for multimodal synergistic therapy and tumor metastasis suppression. Hang L; Zhang T; Wen H; Li M; Liang L; Tang X; Zhou C; Tian J; Ma X; Jiang G Theranostics; 2021; 11(20):10001-10011. PubMed ID: 34815800 [No Abstract] [Full Text] [Related]
8. Engineering Magnetic Extracellular Vesicles Mimetics for Enhanced Targeting Chemodynamic Therapy to Overcome Ovary Cancer. Wang S; Mao Y; Rong S; Liu G; Cao Y; Yang Z; Yu H; Zhang X; Fang H; Cai Z; Chen Y; Huang H; Li H ACS Appl Mater Interfaces; 2024 Jul; 16(30):39021-39034. PubMed ID: 39033517 [TBL] [Abstract][Full Text] [Related]
9. Hepatoprotective effects of Mimic of Manganese superoxide dismutase against carbon tetrachloride-induced hepatic injury. Wang YH; Xu XJ; Li HL Int Immunopharmacol; 2014 Sep; 22(1):126-32. PubMed ID: 24975834 [TBL] [Abstract][Full Text] [Related]
10. Eradication of solid tumors by chemodynamic theranostics with H Wang N; Zeng Q; Zhang R; Xing D; Zhang T Theranostics; 2021; 11(5):2334-2348. PubMed ID: 33500728 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy. Shao F; Wu Y; Tian Z; Liu S Biomaterials; 2021 Jul; 274():120869. PubMed ID: 33984636 [TBL] [Abstract][Full Text] [Related]
12. A self-amplified nanocatalytic system for achieving "1 + 1 + 1 > 3" chemodynamic therapy on triple negative breast cancer. Zhou L; Chen J; Sun Y; Chai K; Zhu Z; Wang C; Chen M; Han W; Hu X; Li R; Yao T; Li H; Dong C; Shi S J Nanobiotechnology; 2021 Sep; 19(1):261. PubMed ID: 34481495 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant enzyme activities of iron-saturated bovine lactoferrin (Fe-bLf) in human gut epithelial cells under oxidative stress. Burrow H; Kanwar RK; Kanwar JR Med Chem; 2011 May; 7(3):224-30. PubMed ID: 21486205 [TBL] [Abstract][Full Text] [Related]
14. Self-activated Liu W; Ruan ML; Liu L; Ji X; Ma Y; Yuan P; Tang G; Lin H; Dai J; Xue W Theranostics; 2020; 10(5):2201-2214. PubMed ID: 32104504 [TBL] [Abstract][Full Text] [Related]
15. Superoxide dismutase in nanoarchaeosomes for targeted delivery to inflammatory macrophages. Schilrreff P; Simioni YR; Jerez HE; Caimi AT; de Farias MA; Villares Portugal R; Romero EL; Morilla MJ Colloids Surf B Biointerfaces; 2019 Jul; 179():479-487. PubMed ID: 31005743 [TBL] [Abstract][Full Text] [Related]
16. Photothermal-reinforced and glutathione-triggered in Situ cascaded nanocatalytic therapy. An P; Fan F; Gu D; Gao Z; Hossain AMS; Sun B J Control Release; 2020 May; 321():734-743. PubMed ID: 32145265 [TBL] [Abstract][Full Text] [Related]
17. Effect of Momordica grosvenori on oxidative stress pathways in renal mitochondria of normal and alloxan-induced diabetic mice. Involvement of heme oxygenase-1. Song F; Qi X; Chen W; Jia W; Yao P; Nussler AK; Sun X; Liu L Eur J Nutr; 2007 Mar; 46(2):61-9. PubMed ID: 17278042 [TBL] [Abstract][Full Text] [Related]
18. Novel Tumor-Microenvironment-Based Sequential Catalytic Therapy by Fe(II)-Engineered Polydopamine Nanoparticles. Zhu Y; Xin N; Qiao Z; Chen S; Zeng L; Zhang Y; Wei D; Sun J; Fan H ACS Appl Mater Interfaces; 2019 Nov; 11(46):43018-43030. PubMed ID: 31660723 [TBL] [Abstract][Full Text] [Related]
19. Self-Luminescing Theranostic Nanoreactors with Intraparticle Relayed Energy Transfer for Tumor Microenvironment Activated Imaging and Photodynamic Therapy. Wu M; Wu L; Li J; Zhang D; Lan S; Zhang X; Lin X; Liu G; Liu X; Liu J Theranostics; 2019; 9(1):20-33. PubMed ID: 30662551 [TBL] [Abstract][Full Text] [Related]
20. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. An Q; Sun C; Li D; Xu K; Guo J; Wang C ACS Appl Mater Interfaces; 2013 Dec; 5(24):13248-57. PubMed ID: 24199694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]