These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32483706)

  • 1. Gelatin and Starch: What Better Stabilizes the Enzyme Activity?
    Esimbekova EN; Govorun AE; Lonshakova-Mukina VI; Kratasyuk VA
    Dokl Biol Sci; 2020 Mar; 491(1):43-46. PubMed ID: 32483706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelatin and starch as stabilizers of the coupled enzyme system of luminous bacteria NADH:FMN-oxidoreductase-luciferase.
    Bezrukikh A; Esimbekova E; Nemtseva E; Kratasyuk V; Shimomura O
    Anal Bioanal Chem; 2014 Sep; 406(23):5743-7. PubMed ID: 25002335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of immobilized and soluble NADH:FMN-oxidoreductase-luciferase coupled enzyme system.
    Esimbekova EN; Torgashina IG; Kratasyuk VA
    Biochemistry (Mosc); 2009 Jun; 74(6):695-700. PubMed ID: 19645676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of NAD(P)H:FMN-oxidoreductase and luciferase from luminous bacteria in a viscous medium: Finding the weakest link in the chain.
    Sutormin OS; Nemtseva EV; Gulnov DV; Sukovatyi LA; Tyrtyshnaya YS; Lisitsa AE; Kratasyuk VA
    Photochem Photobiol; 2024; 100(2):465-476. PubMed ID: 37583116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of Butyrylcholinesterase by the Entrapment into the Natural Polymer-Based Gels.
    Lonshakova-Mukina VI; Esimbekova EN; Kratasyuk VA
    Dokl Biochem Biophys; 2018 Mar; 479(1):98-100. PubMed ID: 29779107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase.
    Jeffers CE; Tu SC
    Biochemistry; 2001 Feb; 40(6):1749-54. PubMed ID: 11327836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox compounds influence on the NAD(P)H:FMN-oxidoreductase-luciferase bioluminescent system.
    Vetrova EV; Kudryasheva NS; Kratasyuk VA
    Photochem Photobiol Sci; 2007 Jan; 6(1):35-40. PubMed ID: 17200734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific immobilization of in vivo biotinylated bacterial luciferase and FMN:NAD(P)H oxidoreductase.
    Min DJ; Andrade JD; Stewart RJ
    Anal Biochem; 1999 May; 270(1):133-9. PubMed ID: 10328774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative detection of NADH by in vitro bacterial luciferase bioluminescent].
    Mei C; Wang J; Lin H; Wang J
    Wei Sheng Wu Xue Bao; 2009 Sep; 49(9):1223-8. PubMed ID: 20030062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase.
    Vetrova EV; Kudryasheva NS; Visser AJ; van Hoek A
    Luminescence; 2005; 20(3):205-9. PubMed ID: 15924327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles for Construction of Bioluminescent Enzyme Biotests for Analysis of Complex Media.
    Kalyabina VP; Esimbekova EN; Torgashina IG; Kopylova KV; Kratasyuk VA
    Dokl Biochem Biophys; 2019 Mar; 485(1):107-110. PubMed ID: 31201626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, biochemical and kinetic properties of recombinant Pst2p from Saccharomyces cerevisiae, a FMN-dependent NAD(P)H:quinone oxidoreductase.
    Koch K; Hromic A; Sorokina M; Strandback E; Reisinger M; Gruber K; Macheroux P
    Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1046-1056. PubMed ID: 28499769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of luciferase and NADH:FMN oxidoreductase concentrations on the light kinetics of bacterial bioluminescence.
    Lavi J; Raunio R; Malkov Y; Lövgren T
    Biochem Biophys Res Commun; 1983 Feb; 111(1):266-73. PubMed ID: 6830592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioluminescent enzymatic rapid assay of water integral toxicity.
    Esimbekova EN; Kondik AM; Kratasyuk VA
    Environ Monit Assess; 2013 Jul; 185(7):5909-16. PubMed ID: 23151839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioluminescence assays: effects of quinones and phenols.
    Kudryasheva N; Vetrova E; Kuznetsov A; Kratasyuk V; Stom D
    Ecotoxicol Environ Saf; 2002 Oct; 53(2):221-5. PubMed ID: 12568457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase.
    Lei B; Tu SC
    Biochemistry; 1998 Oct; 37(41):14623-9. PubMed ID: 9772191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and categorization of commercial confectionary gels through napping-ultra flash profile (UFP) and hierarchical clustering analysis.
    Obas FL; Lee SY; Thomas LC; Schmidt SJ
    J Food Sci; 2021 Jun; 86(6):2655-2670. PubMed ID: 34018184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymes Immobilized into Starch- and Gelatin-Based Hydrogels: Properties and Application in Inhibition Assay.
    Esimbekova EN; Torgashina IG; Nemtseva EV; Kratasyuk VA
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic Responses to Low-Intensity Radiation of Tritium.
    Rozhko TV; Nemtseva EV; Gardt MV; Raikov AV; Lisitsa AE; Badun GA; Kudryasheva NS
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism and quaternary structure of Aminobacter aminovorans NADH:flavin oxidoreductase: an unusual flavin reductase with bound flavin.
    Russell TR; Demeler B; Tu SC
    Biochemistry; 2004 Feb; 43(6):1580-90. PubMed ID: 14769034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.