BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3248377)

  • 1. Evolution of heterochromatin-associated satellite DNA loci in felids and canids (Carnivora).
    Fanning TG; Modi WS; Wayne RK; O'Brien SJ
    Cytogenet Cell Genet; 1988; 48(4):214-9. PubMed ID: 3248377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal localization of satellite DNA sequences among 22 species of felids and canids (Carnivora).
    Modi WS; Fanning TG; Wayne RK; O'Brien SJ
    Cytogenet Cell Genet; 1988; 48(4):208-13. PubMed ID: 3248376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of centromere-associated nucleotide sequences in two species of canids.
    Fanning TG
    Gene; 1989 Dec; 85(2):559-63. PubMed ID: 2628185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterochromatin condensation and evolution of unique satellite-DNA families in two parasitic wasp species: Diadromus pulchellus and Eupelmus vuilleti (Hymenoptera).
    Bigot Y; Hamelin MH; Periquet G
    Mol Biol Evol; 1990 Jul; 7(4):351-64. PubMed ID: 2385173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning of an equine satellite-type DNA sequence and its chromosomal localization.
    Sakagami M; Hirota K; Awata T; Yasue H
    Cytogenet Cell Genet; 1994; 66(1):27-30. PubMed ID: 8275703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Chromosomal localization and evolutionary age of satellite DNAs of Mustelidae].
    Lushnikova TP; GrafodatskiÄ­ AS; Romashchenko AG; Radzhabli SI
    Genetika; 1988 Dec; 24(12):2134-40. PubMed ID: 3250906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids.
    Wurster-Hill DH; Centerwall WR
    Cytogenet Cell Genet; 1982; 34(1-2):178-92. PubMed ID: 7151489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel interspersed type of organization of satellite DNAs in Tribolium madens heterochromatin.
    Zinić SD; Ugarković D; Cornudella L; Plohl M
    Chromosome Res; 2000; 8(3):201-12. PubMed ID: 10841047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cloned repeated DNA sequence in human chromosome heteromorphisms.
    Gosden JR; Lawrie SS; Cooke HJ
    Cytogenet Cell Genet; 1981; 29(1):32-9. PubMed ID: 6161756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two AT-rich satellite DNAs in the chironomid Glyptotendipes barbipes (Staeger): isolation and localization in polytene chromosomes of G. barbipes and Chironomus thummi.
    Schmidt ER
    Chromosoma; 1980; 79(3):315-28. PubMed ID: 7398499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Satellite DNA in the kangaroo Macropus rufogriseus.
    Dunsmuir P
    Chromosoma; 1976 Jun; 56(2):111-25. PubMed ID: 976017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cytogenetic study of heterochromatin in Hisonotus leucofrenatus (Teleostei, Loricariidae, Hypoptopomatinae).
    Andreata AA; Ferreira DC; Foresti F; Oliveira C
    Hereditas; 2010 Feb; 147(1):10-7. PubMed ID: 20416012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Karyotypic evolution of a novel cervid satellite DNA family isolated by microdissection from the Indian muntjac Y-chromosome.
    Li YC; Cheng YM; Hsieh LJ; Ryder OA; Yang F; Liao SJ; Hsiao KM; Tsai FJ; Tsai CH; Lin CC
    Chromosoma; 2005 May; 114(1):28-38. PubMed ID: 15827746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Satellite DNA in the three C-bands of an unusual mouse marker chromosome. A model of chromosomal evolution.
    Arnason U; Manolova Y; Manolov G; Bregula U; Levan A
    Exp Cell Res; 1986 May; 164(1):256-60. PubMed ID: 3956596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pattern of phylogenomic evolution of the Canidae.
    Nash WG; Menninger JC; Wienberg J; Padilla-Nash HM; O'Brien SJ
    Cytogenet Cell Genet; 2001; 95(3-4):210-24. PubMed ID: 12063402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organisation and evolution of Drosophila virilis heterochromatin.
    Holmquist G
    Nature; 1975 Oct; 257(5526):503-6. PubMed ID: 1178055
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays.
    Modi WS
    Cytogenet Cell Genet; 1993; 62(2-3):142-8. PubMed ID: 8428514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of constitutive heterochromatin in carnivores.
    Pathak S; Wurster-Hill DH
    Cytogenet Cell Genet; 1977; 18(5):245-54. PubMed ID: 880831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human (Homo sapiens) and chimpanzee (Pan troglodytes) share similar ancestral centromeric alpha satellite DNA sequences but other fractions of heterochromatin differ considerably.
    Luke S; Verma RS
    Am J Phys Anthropol; 1995 Jan; 96(1):63-71. PubMed ID: 7726296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.