BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3248377)

  • 21. Molecular characterization of the complex sex-chromosome heterochromatin in the rodent Microtus chrotorrhinus.
    Ivanov SV; Modi WS
    Cytogenet Cell Genet; 1996; 75(1):49-56. PubMed ID: 8995489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional aspects of satellite DNA and heterochromatin.
    John B; Miklos GL
    Int Rev Cytol; 1979; 58():1-114. PubMed ID: 391760
    [No Abstract]   [Full Text] [Related]  

  • 23. Evolution of a centromeric satellite DNA and phylogeny of lacertid lizards.
    Capriglione T; Cardone A; Odierna G; Olmo E
    Comp Biochem Physiol B; 1991; 100(3):641-5. PubMed ID: 1814688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Satellite DNA and evolution of sex chromosomes.
    Singh L; Purdom IF; Jones KW
    Chromosoma; 1976 Dec; 59(1):43-62. PubMed ID: 1001165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary dynamics of two satellite DNA families in rock lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories but common traits.
    Rojo V; Martínez-Lage A; Giovannotti M; González-Tizón AM; Nisi Cerioni P; Caputo Barucchi V; Galán P; Olmo E; Naveira H
    Chromosome Res; 2015 Sep; 23(3):441-61. PubMed ID: 26384818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The chromosomal localisation of satellite DNA in Ptyas mucosus (Ophidia, Colubridae).
    Singh L; Purdom IF; Jones KW
    Chromosoma; 1976 Aug; 57(2):177-84. PubMed ID: 954552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wide distribution of related satellite DNA families within the genus Pimelia (Tenebrionidae).
    Bruvo-Madarić B; Plohl M; Ugarković D
    Genetica; 2007 May; 130(1):35-42. PubMed ID: 16897459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: an evolutionary perspective.
    Macgregor HC; Sessions SK
    Philos Trans R Soc Lond B Biol Sci; 1986 Jan; 312(1154):243-59. PubMed ID: 2870520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A satellite DNA of the Sparidae family (pisces, perciformes) associated with telomeric sequences.
    Garrido-Ramos MA; de la Herrán R; CR Rejón ; MR Rejón
    Cytogenet Cell Genet; 1998; 83(1-2):3-9. PubMed ID: 9925909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conserved patterns in the evolution of Tribolium satellite DNAs.
    Mravinac B; Plohl M; Ugarković D
    Gene; 2004 May; 332():169-77. PubMed ID: 15145066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New types of mouse centromeric satellite DNAs.
    Kuznetsova IS; Prusov AN; Enukashvily NI; Podgornaya OI
    Chromosome Res; 2005; 13(1):9-25. PubMed ID: 15791408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference to Drosophila.
    Appels R; Peacock WJ
    Int Rev Cytol Suppl; 1978; Suppl 8():69-126. PubMed ID: 114503
    [No Abstract]   [Full Text] [Related]  

  • 34. Telomeric satellite DNA functions in regulating recombination.
    Miklos GL; Nankivell RN
    Chromosoma; 1976 Jun; 56(2):143-67. PubMed ID: 976019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives.
    Vicari MR; Nogaroto V; Noleto RB; Cestari MM; Cioffi MB; Almeida MC; Moreira-Filho O; Bertollo LA; Artoni RF
    J Fish Biol; 2010 Apr; 76(5):1094-116. PubMed ID: 20409164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The interrelationships of chromosome banding patterns in procyonids, viverrids, and felids.
    Wurster-Hill DH; Gray CW
    Cytogenet Cell Genet; 1975; 15(5):306-31. PubMed ID: 1222587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs.
    Camacho JP; Ruiz-Ruano FJ; Martín-Blázquez R; López-León MD; Cabrero J; Lorite P; Cabral-de-Mello DC; Bakkali M
    Chromosoma; 2015 Jun; 124(2):263-75. PubMed ID: 25472934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Some trends in the evolution of very large chromosomes.
    Macgregor HC
    Philos Trans R Soc Lond B Biol Sci; 1978 May; 283(997):309-18. PubMed ID: 26075
    [No Abstract]   [Full Text] [Related]  

  • 39. Chromosome markers in Mus musculus: differences in C-banding between the subspecies M.m. musculus and M.m. molossinus.
    Dev VG; Miller DA; Tantravahi R; Schreck RR; Roderick TH; Erlanger BF; Miller OJ
    Chromosoma; 1975 Dec; 53(4):335-44. PubMed ID: 1212900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole-comparative genomic hybridization in domestic sheep (Ovis aries) breeds.
    Dávila-Rodríguez MI; Cortés-Gutiérrez EI; López-Fernández C; Pita M; Mezzanotte R; Gosálvez J
    Cytogenet Genome Res; 2009; 124(1):19-26. PubMed ID: 19372665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.