These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32483970)

  • 21. Charge-Transfer-Controlled Growth of Organic Semiconductor Crystals on Graphene.
    Nguyen NN; Lee HC; Yoo MS; Lee E; Lee H; Lee SB; Cho K
    Adv Sci (Weinh); 2020 Mar; 7(6):1902315. PubMed ID: 32195079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fermi Level Pinning Dependent 2D Semiconductor Devices: Challenges and Prospects.
    Liu X; Choi MS; Hwang E; Yoo WJ; Sun J
    Adv Mater; 2022 Apr; 34(15):e2108425. PubMed ID: 34913205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contacts between Two- and Three-Dimensional Materials: Ohmic, Schottky, and p-n Heterojunctions.
    Xu Y; Cheng C; Du S; Yang J; Yu B; Luo J; Yin W; Li E; Dong S; Ye P; Duan X
    ACS Nano; 2016 May; 10(5):4895-919. PubMed ID: 27132492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS
    Kim GS; Kim SH; Park J; Han KH; Kim J; Yu HY
    ACS Nano; 2018 Jun; 12(6):6292-6300. PubMed ID: 29851473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defect Dominated Charge Transport and Fermi Level Pinning in MoS
    Bampoulis P; van Bremen R; Yao Q; Poelsema B; Zandvliet HJW; Sotthewes K
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19278-19286. PubMed ID: 28508628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A low Schottky barrier height and transport mechanism in gold-graphene-silicon (001) heterojunctions.
    Courtin J; Le Gall S; Chrétien P; Moréac A; Delhaye G; Lépine B; Tricot S; Turban P; Schieffer P; Le Breton JC
    Nanoscale Adv; 2019 Sep; 1(9):3372-3378. PubMed ID: 36133562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling.
    Du Y; Liu H; Deng Y; Ye PD
    ACS Nano; 2014 Oct; 8(10):10035-42. PubMed ID: 25314022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clean Interface Contact Using a ZnO Interlayer for Low-Contact-Resistance MoS
    Jang J; Kim Y; Chee SS; Kim H; Whang D; Kim GH; Yun SJ
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):5031-5039. PubMed ID: 31891246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides.
    Guo Y; Liu D; Robertson J
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25709-15. PubMed ID: 26523332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contact Effect of ReS
    Park JY; Joe HE; Yoon HS; Yoo S; Kim T; Kang K; Min BK; Jun SC
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26325-26332. PubMed ID: 28718280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier.
    Liu Y; Stradins P; Wei SH
    Sci Adv; 2016 Apr; 2(4):e1600069. PubMed ID: 27152360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of fermi-level pinning in nanotube schottky diodes.
    Leonard F; Tersoff J
    Phys Rev Lett; 2000 May; 84(20):4693-6. PubMed ID: 10990773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial fluctuations in barrier height at the graphene-silicon carbide Schottky junction.
    Rajput S; Chen MX; Liu Y; Li YY; Weinert M; Li L
    Nat Commun; 2013; 4():2752. PubMed ID: 24256921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-Power Complementary Inverter Based on Graphene/Carbon-Nanotube and Graphene/MoS
    Shin DH; You YG; Jo SI; Jeong GH; Campbell EEB; Chung HJ; Jhang SH
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Schottky or Ohmic metal-semiconductor contact: influence on photocatalytic efficiency of Ag/ZnO and Pt/ZnO model systems.
    Yan F; Wang Y; Zhang J; Lin Z; Zheng J; Huang F
    ChemSusChem; 2014 Jan; 7(1):101-4. PubMed ID: 24458735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Photocurrent in Gated Graphene-Silicon Hybrid Photodiodes.
    Riazimehr S; Kataria S; Bornemann R; Haring Bolívar P; Ruiz FJG; Engström O; Godoy A; Lemme MC
    ACS Photonics; 2017 Jun; 4(6):1506-1514. PubMed ID: 28781983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of the metal/WS
    Nowakowski K; van Bremen R; Zandvliet HJW; Bampoulis P
    Nanoscale; 2019 Mar; 11(12):5548-5556. PubMed ID: 30860526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gap state distribution and Fermi level pinning in monolayer to multilayer MoS
    Dagan R; Vaknin Y; Rosenwaks Y
    Nanoscale; 2020 Apr; 12(16):8883-8889. PubMed ID: 32259170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-contact-resistance graphene devices with nickel-etched-graphene contacts.
    Leong WS; Gong H; Thong JT
    ACS Nano; 2014 Jan; 8(1):994-1001. PubMed ID: 24328346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. n-Type Ohmic contact and p-type Schottky contact of monolayer InSe transistors.
    Shi B; Wang Y; Li J; Zhang X; Yan J; Liu S; Yang J; Pan Y; Zhang H; Yang J; Pan F; Lu J
    Phys Chem Chem Phys; 2018 Oct; 20(38):24641-24651. PubMed ID: 30238940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.