These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32484081)

  • 1. Novel Automated Method for the Detection of White Matter Hyperintensities in Brain Multispectral MR Images.
    Chen HM; Chen CC; Wang HC; Chang YC; Pan KJ; Chen WH; Chen HC; Wu YY; Chai JW; Ouyang YC; Lee SK
    Curr Med Imaging; 2020; 16(5):469-478. PubMed ID: 32484081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-tissue compositional analysis reveals in-vivo microstructural heterogeneity of white matter hyperintensities following stroke.
    Khan W; Egorova N; Khlif MS; Mito R; Dhollander T; Brodtmann A
    Neuroimage; 2020 Sep; 218():116869. PubMed ID: 32334092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging.
    Dadar M; Maranzano J; Misquitta K; Anor CJ; Fonov VS; Tartaglia MC; Carmichael OT; Decarli C; Collins DL;
    Neuroimage; 2017 Aug; 157():233-249. PubMed ID: 28602597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of variable threshold intensity to segmentation for white matter hyperintensities in fluid attenuated inversion recovery magnetic resonance images.
    Yoo BI; Lee JJ; Han JW; Oh SY; Lee EY; MacFall JR; Payne ME; Kim TH; Kim JH; Kim KW
    Neuroradiology; 2014 Apr; 56(4):265-81. PubMed ID: 24493377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities.
    Griffanti L; Zamboni G; Khan A; Li L; Bonifacio G; Sundaresan V; Schulz UG; Kuker W; Battaglini M; Rothwell PM; Jenkinson M
    Neuroimage; 2016 Nov; 141():191-205. PubMed ID: 27402600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
    Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S
    Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully automated method for quantifying and localizing white matter hyperintensities on MR images.
    Wu M; Rosano C; Butters M; Whyte E; Nable M; Crooks R; Meltzer CC; Reynolds CF; Aizenstein HJ
    Psychiatry Res; 2006 Dec; 148(2-3):133-42. PubMed ID: 17097277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated detection of white matter hyperintensities of all sizes in cerebral small vessel disease.
    Ghafoorian M; Karssemeijer N; van Uden IW; de Leeuw FE; Heskes T; Marchiori E; Platel B
    Med Phys; 2016 Dec; 43(12):6246. PubMed ID: 27908171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Changes in White Matter Hyperintensities in Reversible Cerebral Vasoconstriction Syndrome.
    Chen SP; Chou KH; Fuh JL; Huang YH; Huang CC; Lirng JF; Wang YF; Lin CP; Wang SJ
    JAMA Neurol; 2018 Sep; 75(9):1106-1113. PubMed ID: 29868878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study.
    Ribaldi F; Altomare D; Jovicich J; Ferrari C; Picco A; Pizzini FB; Soricelli A; Mega A; Ferretti A; Drevelegas A; Bosch B; Müller BW; Marra C; Cavaliere C; Bartrés-Faz D; Nobili F; Alessandrini F; Barkhof F; Gros-Dagnac H; Ranjeva JP; Wiltfang J; Kuijer J; Sein J; Hoffmann KT; Roccatagliata L; Parnetti L; Tsolaki M; Constantinidis M; Aiello M; Salvatore M; Montalti M; Caulo M; Didic M; Bargallo N; Blin O; Rossini PM; Schonknecht P; Floridi P; Payoux P; Visser PJ; Bordet R; Lopes R; Tarducci R; Bombois S; Hensch T; Fiedler U; Richardson JC; Frisoni GB; Marizzoni M
    Magn Reson Imaging; 2021 Feb; 76():108-115. PubMed ID: 33220450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images.
    Li H; Jiang G; Zhang J; Wang R; Wang Z; Zheng WS; Menze B
    Neuroimage; 2018 Dec; 183():650-665. PubMed ID: 30125711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation of white matter hyperintensities in T2-FLAIR with AQUA: A comparative validation study against conventional methods.
    Lee S; Rieu Z; Kim RE; Lee M; Yen K; Yong J; Kim D
    Brain Res Bull; 2023 Dec; 205():110825. PubMed ID: 38000477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based grading of white matter hyperintensities enables identification of potential markers in multi-sequence MRI data.
    Mu S; Lu W; Yu G; Zheng L; Qiu J
    Comput Methods Programs Biomed; 2024 Jan; 243():107904. PubMed ID: 37924768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with cerebral infarction.
    Tsai JZ; Peng SJ; Chen YW; Wang KW; Li CH; Wang JY; Chen CJ; Lin HJ; Smith EE; Wu HK; Sung SF; Yeh PS; Hsin YL
    PLoS One; 2014; 9(8):e104011. PubMed ID: 25127120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DEWS (DEep White matter hyperintensity Segmentation framework): A fully automated pipeline for detecting small deep white matter hyperintensities in migraineurs.
    Park BY; Lee MJ; Lee SH; Cha J; Chung CS; Kim ST; Park H
    Neuroimage Clin; 2018; 18():638-647. PubMed ID: 29845012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.