These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1421 related articles for article (PubMed ID: 32484086)

  • 1. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
    Baig R; Bibi M; Hamid A; Kausar S; Khalid S
    Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation.
    Lama N; Stanley RJ; Lama B; Maurya A; Nambisan A; Hagerty J; Phan T; Van Stoecker W
    J Imaging Inform Med; 2024 Aug; 37(4):1812-1823. PubMed ID: 38409610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis.
    Song L; Lin J; Wang ZJ; Wang H
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2912-2921. PubMed ID: 32071016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images.
    Kaur R; GholamHosseini H; Sinha R; Lindén M
    BMC Med Imaging; 2022 May; 22(1):103. PubMed ID: 35644612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent skin lesion segmentation using deformable attention Transformer U-Net with bidirectional attention mechanism in skin cancer images.
    Cai L; Hou K; Zhou S
    Skin Res Technol; 2024 Aug; 30(8):e13783. PubMed ID: 39113617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of deep learning architectures on melanoma detection.
    Hosseinzadeh Kassani S; Hosseinzadeh Kassani P
    Tissue Cell; 2019 Jun; 58():76-83. PubMed ID: 31133249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of dermoscopy images based on deformable 3D convolution and ResU-NeXt +.
    Zhao C; Shuai R; Ma L; Liu W; Wu M
    Med Biol Eng Comput; 2021 Sep; 59(9):1815-1832. PubMed ID: 34304370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Dermoscopic Image Segmentation with Enhanced Convolutional-Deconvolutional Networks.
    Yuan Y; Lo YC
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):519-526. PubMed ID: 29990146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering.
    Nida N; Irtaza A; Javed A; Yousaf MH; Mahmood MT
    Int J Med Inform; 2019 Apr; 124():37-48. PubMed ID: 30784425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding.
    Garcia-Arroyo JL; Garcia-Zapirain B
    Comput Methods Programs Biomed; 2019 Jan; 168():11-19. PubMed ID: 30527129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanoma diagnosis using deep learning techniques on dermatoscopic images.
    Jojoa Acosta MF; Caballero Tovar LY; Garcia-Zapirain MB; Percybrooks WS
    BMC Med Imaging; 2021 Jan; 21(1):6. PubMed ID: 33407213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanoma recognition in dermoscopy images using lesion's peripheral region information.
    Tajeddin NZ; Asl BM
    Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017.
    Marchetti MA; Liopyris K; Dusza SW; Codella NCF; Gutman DA; Helba B; Kalloo A; Halpern AC;
    J Am Acad Dermatol; 2020 Mar; 82(3):622-627. PubMed ID: 31306724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.
    Alsaade FW; Aldhyani THH; Al-Adhaileh MH
    Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection.
    Pennisi A; Bloisi DD; Nardi D; Giampetruzzi AR; Mondino C; Facchiano A
    Comput Med Imaging Graph; 2016 Sep; 52():89-103. PubMed ID: 27215953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.
    Al-Masni MA; Kim DH; Kim TS
    Comput Methods Programs Biomed; 2020 Jul; 190():105351. PubMed ID: 32028084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 72.