These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 32484170)
1. High-quality synthesis of a nanosized CHA zeolite by a combination of a starting FAU zeolite and aluminum sources. Tanigawa T; Tsunoji N; Sadakane M; Sano T Dalton Trans; 2020 Aug; 49(29):9972-9982. PubMed ID: 32484170 [TBL] [Abstract][Full Text] [Related]
2. Study on the Synthesis of Chabazite Zeolites via Interzeolite Conversion of Faujasites. Dang LV; Nguyen TTM; Do DV; Le ST; Pham TD; Le ATM J Anal Methods Chem; 2021; 2021():5554568. PubMed ID: 33859863 [TBL] [Abstract][Full Text] [Related]
3. Tracking the rearrangement of atomic configurations during the conversion of Muraoka K; Sada Y; Shimojima A; Chaikittisilp W; Okubo T Chem Sci; 2019 Oct; 10(37):8533-8540. PubMed ID: 31803428 [TBL] [Abstract][Full Text] [Related]
4. Rational Synthesis of Chabazite (CHA) Zeolites with Controlled Si/Al Ratio and Their CO Guo Y; Sun T; Gu Y; Liu X; Ke Q; Wei X; Wang S Chem Asian J; 2018 Nov; 13(21):3222-3230. PubMed ID: 30129135 [TBL] [Abstract][Full Text] [Related]
5. Rapid synthesis of an aluminum-rich MSE-type zeolite by the hydrothermal conversion of an FAU-type zeolite. Inagaki S; Tsuboi Y; Nishita Y; Syahylah T; Wakihara T; Kubota Y Chemistry; 2013 Jun; 19(24):7780-6. PubMed ID: 23606200 [TBL] [Abstract][Full Text] [Related]
6. Direct Synthesis of Aluminosilicate SSZ-39 Zeolite Using Colloidal Silica as a Starting Source. Xu H; Zhang J; Wu Q; Chen W; Lei C; Zhu Q; Han S; Fei J; Zheng A; Zhu L; Meng X; Maurer S; Dai D; Parvulescu AN; Müller U; Xiao FS ACS Appl Mater Interfaces; 2019 Jul; 11(26):23112-23117. PubMed ID: 31252486 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and Structural Analysis of High-Silica ERI Zeolite with Spatially-Biased Al Distribution as a Promising NH Zhu J; Muraoka K; Ohnishi T; Yanaba Y; Ogura M; Nakayama A; Wakihara T; Liu Z; Okubo T Adv Sci (Weinh); 2024 Apr; 11(14):e2307674. PubMed ID: 38308139 [TBL] [Abstract][Full Text] [Related]
8. Tracking the crystallization behavior of high-silica FAU during AEI-type zeolite synthesis using acid treated FAU-type zeolite. Sada Y; Chokkalingam A; Iyoki K; Yoshioka M; Ishikawa T; Naraki Y; Yanaba Y; Yamada H; Ohara K; Sano T; Okubo T; Liu Z; Wakihara T RSC Adv; 2021 Jun; 11(37):23082-23089. PubMed ID: 35480439 [TBL] [Abstract][Full Text] [Related]
9. Ruthenium tris(2,2'-bipyridyl) complex encapsulated in nanosized faujasite zeolite as intracellular localization tracer. Komaty S; Özçelik H; Zaarour M; Ferre A; Valable S; Mintova S J Colloid Interface Sci; 2021 Jan; 581(Pt B):919-927. PubMed ID: 32956911 [TBL] [Abstract][Full Text] [Related]
10. Low-silica Cu-CHA Zeolite Enriched with Al Pairs Transcribed from Silicoaluminophosphate Seed: Synthesis and Ammonia Selective Catalytic Reduction Performance. Wang Y; Han J; Chen M; Lv W; Meng P; Gao W; Meng X; Fan W; Xu J; Yan W; Yu J Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202306174. PubMed ID: 37190928 [TBL] [Abstract][Full Text] [Related]
11. Interzeolite conversion of a micronsized FAU to a nanosized CHA zeolite free of organic structure directing agent with a high CO Møller KH; Debost M; Lakiss L; Kegnæs S; Mintova S RSC Adv; 2020 Nov; 10(70):42953-42959. PubMed ID: 35514926 [TBL] [Abstract][Full Text] [Related]
12. Revealing scenarios of interzeolite conversion from FAU to AEI through the variation of starting materials. Liu Z; Chokkalingam A; Miyagi S; Yoshioka M; Ishikawa T; Yamada H; Ohara K; Tsunoji N; Naraki Y; Sano T; Okubo T; Wakihara T Phys Chem Chem Phys; 2022 Feb; 24(7):4136-4146. PubMed ID: 34647941 [TBL] [Abstract][Full Text] [Related]
13. Revisiting the seed-assisted synthesis of zeolites without organic structure-directing agents: insights from the CHA case. Kadja GTM; Kadir IR; Fajar ATN; Suendo V; Mukti RR RSC Adv; 2020 Jan; 10(9):5304-5315. PubMed ID: 35498309 [TBL] [Abstract][Full Text] [Related]
15. Alkaline cations directing the transformation of FAU zeolites into five different framework types. Van Tendeloo L; Gobechiya E; Breynaert E; Martens JA; Kirschhock CE Chem Commun (Camb); 2013 Dec; 49(100):11737-9. PubMed ID: 24202181 [TBL] [Abstract][Full Text] [Related]
16. Acid Catalysis over Low-Silica Faujasite Zeolites. Li X; Han H; Xu W; Hwang SJ; Shi Z; Lu P; Bhan A; Tsapatsis M J Am Chem Soc; 2022 Jun; 144(21):9324-9329. PubMed ID: 35580033 [TBL] [Abstract][Full Text] [Related]
17. Cooperative and Competitive Occlusion of Organic and Inorganic Structure-Directing Agents within Chabazite Zeolites Influences Their Aluminum Arrangement. Di Iorio JR; Li S; Jones CB; Nimlos CT; Wang Y; Kunkes E; Vattipalli V; Prasad S; Moini A; Schneider WF; Gounder R J Am Chem Soc; 2020 Mar; 142(10):4807-4819. PubMed ID: 32053365 [TBL] [Abstract][Full Text] [Related]
18. In Situ Imaging of Faujasite Surface Growth Reveals Unique Pathways of Zeolite Crystallization. Jain R; Niu Z; Choudhary M; Bourji H; Palmer JC; Rimer JD J Am Chem Soc; 2023 Jan; 145(2):1155-1164. PubMed ID: 36603155 [TBL] [Abstract][Full Text] [Related]
19. Confined space synthesis. A novel route to nanosized zeolites. Schmidt I; Madsen C; Jacobsen CJ Inorg Chem; 2000 May; 39(11):2279-83. PubMed ID: 12526485 [TBL] [Abstract][Full Text] [Related]