BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32484221)

  • 1. Beware of the generic machine learning-based scoring functions in structure-based virtual screening.
    Shen C; Hu Y; Wang Z; Zhang X; Pang J; Wang G; Zhong H; Xu L; Cao D; Hou T
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32484221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening?
    Shen C; Weng G; Zhang X; Leung EL; Yao X; Pang J; Chai X; Li D; Wang E; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33418562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology-Based and Conformation-Based Decoys Database: An Unbiased Online Database for Training and Benchmarking Machine-Learning Scoring Functions.
    Zhang X; Shen C; Wang T; Kang Y; Li D; Pan P; Wang J; Wang G; Deng Y; Xu L; Cao D; Hou T; Wang Z
    J Med Chem; 2023 Jul; 66(13):9174-9183. PubMed ID: 37317043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving structure-based virtual screening performance via learning from scoring function components.
    Xiong GL; Ye WL; Shen C; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32496540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TocoDecoy: A New Approach to Design Unbiased Datasets for Training and Benchmarking Machine-Learning Scoring Functions.
    Zhang X; Shen C; Liao B; Jiang D; Wang J; Wu Z; Du H; Wang T; Huo W; Xu L; Cao D; Hsieh CY; Hou T
    J Med Chem; 2022 Jun; 65(11):7918-7932. PubMed ID: 35642777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the Generalization Abilities of Machine-Learning Scoring Functions for Structure-Based Virtual Screening.
    Zhu H; Yang J; Huang N
    J Chem Inf Model; 2022 Nov; 62(22):5485-5502. PubMed ID: 36268980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ML-PLIC: a web platform for characterizing protein-ligand interactions and developing machine learning-based scoring functions.
    Zhang X; Shen C; Wang T; Deng Y; Kang Y; Li D; Hou T; Pan P
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37738401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of compound library size on the performance of scoring functions for structure-based virtual screening.
    Fresnais L; Ballester PJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32568385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Boosted Docking (HASTEN): An Open-source Tool To Accelerate Structure-based Virtual Screening Campaigns.
    Kalliokoski T
    Mol Inform; 2021 Sep; 40(9):e2100089. PubMed ID: 34060239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction.
    Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress on the prospective application of machine learning to structure-based virtual screening.
    Ghislat G; Rahman T; Ballester PJ
    Curr Opin Chem Biol; 2021 Dec; 65():28-34. PubMed ID: 34052776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening.
    Hsieh JH; Yin S; Wang XS; Liu S; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2012 Jan; 52(1):16-28. PubMed ID: 22017385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TB-IECS: an accurate machine learning-based scoring function for virtual screening.
    Zhang X; Shen C; Jiang D; Zhang J; Ye Q; Xu L; Hou T; Pan P; Kang Y
    J Cheminform; 2023 Jul; 15(1):63. PubMed ID: 37403155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery.
    Morris CJ; Stern JA; Stark B; Christopherson M; Della Corte D
    J Chem Inf Model; 2022 Nov; 62(22):5342-5350. PubMed ID: 36342217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical guide to machine-learning scoring for structure-based virtual screening.
    Tran-Nguyen VK; Junaid M; Simeon S; Ballester PJ
    Nat Protoc; 2023 Nov; 18(11):3460-3511. PubMed ID: 37845361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactive-enriched machine-learning models exploiting patent data improve structure-based virtual screening for PDL1 dimerizers.
    Gómez-Sacristán P; Simeon S; Tran-Nguyen VK; Patil S; Ballester PJ
    J Adv Res; 2024 Jan; ():. PubMed ID: 38280715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.