These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 32484244)
1. Analysis of cerium oxide and copper oxide nanoparticles bioaccessibility from radish using SP-ICP-MS. Hayder M; Wojcieszek J; Asztemborska M; Zhou Y; Ruzik L J Sci Food Agric; 2020 Oct; 100(13):4950-4958. PubMed ID: 32484244 [TBL] [Abstract][Full Text] [Related]
2. Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.). Wojcieszek J; Jiménez-Lamana J; Bierła K; Ruzik L; Asztemborska M; Jarosz M; Szpunar J Sci Total Environ; 2019 Sep; 683():284-292. PubMed ID: 31132708 [TBL] [Abstract][Full Text] [Related]
3. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. Zhang W; Musante C; White JC; Schwab P; Wang Q; Ebbs SD; Ma X Plant Physiol Biochem; 2017 Jan; 110():185-193. PubMed ID: 26754029 [TBL] [Abstract][Full Text] [Related]
4. Application of Natural Deep Eutectic Solvents for the metal nanoparticles extraction from plant tissue. Jakubowska M; Ruzik L Anal Biochem; 2021 Mar; 617():114117. PubMed ID: 33485818 [TBL] [Abstract][Full Text] [Related]
5. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). Zhang W; Ebbs SD; Musante C; White JC; Gao C; Ma X J Agric Food Chem; 2015 Jan; 63(2):382-90. PubMed ID: 25531028 [TBL] [Abstract][Full Text] [Related]
6. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry. Sánchez-García L; Bolea E; Laborda F; Cubel C; Ferrer P; Gianolio D; da Silva I; Castillo JR J Chromatogr A; 2016 Mar; 1438():205-15. PubMed ID: 26903472 [TBL] [Abstract][Full Text] [Related]
7. Integration of sub-organ quantitative imaging LA-ICP-MS and fractionation reveals differences in translocation and transformation of CeO Chen B; Lum JT; Huang Y; Hu B; Leung KS Anal Chim Acta; 2019 Nov; 1082():18-29. PubMed ID: 31472707 [TBL] [Abstract][Full Text] [Related]
9. Detection of zinc oxide and cerium dioxide nanoparticles during drinking water treatment by rapid single particle ICP-MS methods. Donovan AR; Adams CD; Ma Y; Stephan C; Eichholz T; Shi H Anal Bioanal Chem; 2016 Jul; 408(19):5137-45. PubMed ID: 26960902 [TBL] [Abstract][Full Text] [Related]
10. Phytotoxicity of CeO Gui X; Rui M; Song Y; Ma Y; Rui Y; Zhang P; He X; Li Y; Zhang Z; Liu L Environ Sci Pollut Res Int; 2017 May; 24(15):13775-13781. PubMed ID: 28401392 [TBL] [Abstract][Full Text] [Related]
11. Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Schwabe F; Tanner S; Schulin R; Rotzetter A; Stark W; von Quadt A; Nowack B Metallomics; 2015 Mar; 7(3):466-77. PubMed ID: 25634091 [TBL] [Abstract][Full Text] [Related]
12. An integrated ICP-MS-based analytical approach to fractionate and characterize ionic and nanoparticulate Ce species. Huang Y; Lum JT; Leung KS Anal Bioanal Chem; 2022 May; 414(11):3397-3410. PubMed ID: 35129641 [TBL] [Abstract][Full Text] [Related]
13. Iron plaque reduces cerium uptake and translocation in rice seedlings (Oryza sativa L.) exposed to CeO Bao Y; Pan C; Liu W; Li Y; Ma C; Xing B Sci Total Environ; 2019 Apr; 661():767-777. PubMed ID: 30700388 [TBL] [Abstract][Full Text] [Related]
14. Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. Zhao L; Sun Y; Hernandez-Viezcas JA; Servin AD; Hong J; Niu G; Peralta-Videa JR; Duarte-Gardea M; Gardea-Torresdey JL J Agric Food Chem; 2013 Dec; 61(49):11945-51. PubMed ID: 24245665 [TBL] [Abstract][Full Text] [Related]
15. Effect of nano cerium oxide on soybean (Glycine max L. Merrill) crop exposed to environmentally relevant concentrations. Rodrigues ES; Montanha GS; de Almeida E; Fantucci H; Santos RM; de Carvalho HWP Chemosphere; 2021 Jun; 273():128492. PubMed ID: 33109358 [TBL] [Abstract][Full Text] [Related]
16. Measurement of CeO Jreije I; Azimzada A; Hadioui M; Wilkinson KJ Molecules; 2020 Nov; 25(23):. PubMed ID: 33255591 [TBL] [Abstract][Full Text] [Related]
17. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Hong J; Peralta-Videa JR; Rico C; Sahi S; Viveros MN; Bartonjo J; Zhao L; Gardea-Torresdey JL Environ Sci Technol; 2014 Apr; 48(8):4376-85. PubMed ID: 24625209 [TBL] [Abstract][Full Text] [Related]
18. Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place? Ma Y; Zhang P; Zhang Z; He X; Zhang J; Ding Y; Zhang J; Zheng L; Guo Z; Zhang L; Chai Z; Zhao Y Environ Sci Technol; 2015 Sep; 49(17):10667-74. PubMed ID: 26237071 [TBL] [Abstract][Full Text] [Related]
19. Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO2 nanoparticles. Dan Y; Ma X; Zhang W; Liu K; Stephan C; Shi H Anal Bioanal Chem; 2016 Jul; 408(19):5157-67. PubMed ID: 27129977 [TBL] [Abstract][Full Text] [Related]
20. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Ahmed B; Khan MS; Musarrat J Environ Pollut; 2018 Sep; 240():802-816. PubMed ID: 29783198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]