These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 32484669)

  • 21. Artificial intelligence in virtual screening: Models versus experiments.
    Arul Murugan N; Ruba Priya G; Narahari Sastry G; Markidis S
    Drug Discov Today; 2022 Jul; 27(7):1913-1923. PubMed ID: 35597513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking.
    Cavasotto CN; Di Filippo JI
    J Chem Inf Model; 2023 Apr; 63(8):2267-2280. PubMed ID: 37036491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of hematopoietic progenitor kinase 1 inhibitors using machine learning-based screening and free energy perturbation.
    Feng D; Liu B; Chen Z; Xu J; Geng M; Duan W; Ai J; Zhang H
    J Biomol Struct Dyn; 2024 Jan; ():1-13. PubMed ID: 38198294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Explainable Machine Learning for Property Predictions in Compound Optimization.
    Rodríguez-Pérez R; Bajorath J
    J Med Chem; 2021 Dec; 64(24):17744-17752. PubMed ID: 34902252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning in chemoinformatics and drug discovery.
    Lo YC; Rensi SE; Torng W; Altman RB
    Drug Discov Today; 2018 Aug; 23(8):1538-1546. PubMed ID: 29750902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals.
    Noh J; Gu GH; Kim S; Jung Y
    J Chem Inf Model; 2020 Apr; 60(4):1996-2003. PubMed ID: 32208718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conditional Molecular Design with Deep Generative Models.
    Kang S; Cho K
    J Chem Inf Model; 2019 Jan; 59(1):43-52. PubMed ID: 30016587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting potent compounds via model-based global optimization.
    Ahmadi M; Vogt M; Iyer P; Bajorath J; Fröhlich H
    J Chem Inf Model; 2013 Mar; 53(3):553-9. PubMed ID: 23363236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magicmol: a light-weighted pipeline for drug-like molecule evolution and quick chemical space exploration.
    Chen L; Shen Q; Lou J
    BMC Bioinformatics; 2023 Apr; 24(1):173. PubMed ID: 37101113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RedDB, a computational database of electroactive molecules for aqueous redox flow batteries.
    Sorkun E; Zhang Q; Khetan A; Sorkun MC; Er S
    Sci Data; 2022 Nov; 9(1):718. PubMed ID: 36443329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology.
    Burger PB; Hu X; Balabin I; Muller M; Stanley M; Joubert F; Kaiser TM
    J Chem Inf Model; 2024 May; 64(9):3812-3825. PubMed ID: 38651738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Hit-to-Lead Searching of Kinase Inhibitor Chemical Space via Computational Fragment Merging.
    Andrianov GV; Gabriel Ong WJ; Serebriiskii I; Karanicolas J
    J Chem Inf Model; 2021 Dec; 61(12):5967-5987. PubMed ID: 34762402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization.
    Turk S; Merget B; Rippmann F; Fulle S
    J Chem Inf Model; 2017 Dec; 57(12):3079-3085. PubMed ID: 29131617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in machine learning for directed evolution.
    Wittmann BJ; Johnston KE; Wu Z; Arnold FH
    Curr Opin Struct Biol; 2021 Aug; 69():11-18. PubMed ID: 33647531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Machine Learning Techniques to Predict Binding Affinity for Drug Targets: A Study of Cyclin-Dependent Kinase 2.
    Bitencourt-Ferreira G; Duarte da Silva A; Filgueira de Azevedo W
    Curr Med Chem; 2021; 28(2):253-265. PubMed ID: 31729287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental design strategy: weak reinforcement leads to increased hit rates and enhanced chemical diversity.
    Maciejewski M; Wassermann AM; Glick M; Lounkine E
    J Chem Inf Model; 2015 May; 55(5):956-62. PubMed ID: 25915687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.