These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 32485044)
1. Granular measures of agricultural land use influence lake nitrogen and phosphorus differently at macroscales. Stachelek J; Weng W; Carey CC; Kemanian AR; Cobourn KM; Wagner T; Weathers KC; Soranno PA Ecol Appl; 2020 Dec; 30(8):e02187. PubMed ID: 32485044 [TBL] [Abstract][Full Text] [Related]
2. Watershed land use effects on lake water quality in Denmark. Nielsen A; Trolle D; Søndergaard M; Lauridsen TL; Bjerring R; Olesen JE; Jeppesen E Ecol Appl; 2012 Jun; 22(4):1187-200. PubMed ID: 22827127 [TBL] [Abstract][Full Text] [Related]
3. Exploring watershed effects on nutrient concentrations in shallow lakes through stable isotope analysis. Langer TA; Zimmer KD; Herwig BR; Hobbs WO; Cotner JB Sci Total Environ; 2022 Jun; 823():153742. PubMed ID: 35149058 [TBL] [Abstract][Full Text] [Related]
4. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales. Collins SM; Oliver SK; Lapierre JF; Stanley EH; Jones JR; Wagner T; Soranno PA Ecol Appl; 2017 Jul; 27(5):1529-1540. PubMed ID: 28370707 [TBL] [Abstract][Full Text] [Related]
5. Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales. Fergus CE; Finley AO; Soranno PA; Wagner T PLoS One; 2016; 11(10):e0164592. PubMed ID: 27736962 [TBL] [Abstract][Full Text] [Related]
6. Lake Nutrient Responses to Integrated Conservation Practices in an Agricultural Watershed. Lizotte RE; Yasarer LM; Locke MA; Bingner RL; Knight SS J Environ Qual; 2017 Mar; 46(2):330-338. PubMed ID: 28380566 [TBL] [Abstract][Full Text] [Related]
7. Unexpected stasis in a changing world: Lake nutrient and chlorophyll trends since 1990. Oliver SK; Collins SM; Soranno PA; Wagner T; Stanley EH; Jones JR; Stow CA; Lottig NR Glob Chang Biol; 2017 Dec; 23(12):5455-5467. PubMed ID: 28834575 [TBL] [Abstract][Full Text] [Related]
8. [Relationship Between Agricultural Land and Water Quality of Inflow River in Erhai Lake Basin]. Pang Y; Xiang S; Chu ZS; Xue LQ; Ye BB Huan Jing Ke Xue; 2015 Nov; 36(11):4005-12. PubMed ID: 26910984 [TBL] [Abstract][Full Text] [Related]
9. Influence of social and environmental drivers on nutrient concentrations and ratios in lakes: A comparison between China and Europe. Tong Y; Huang Z; Janssen ABG; Wishart M; He W; Wang X; Zhao Y Water Res; 2022 Dec; 227():119347. PubMed ID: 36399843 [TBL] [Abstract][Full Text] [Related]
10. Trophic status and lake depth play important roles in determining the nutrient-chlorophyll a relationship: Evidence from thousands of lakes globally. Zhao L; Zhu R; Zhou Q; Jeppesen E; Yang K Water Res; 2023 Aug; 242():120182. PubMed ID: 37311404 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake. Luo C; Li Z; Li H; Chen X Int J Environ Res Public Health; 2015 Sep; 12(9):10955-73. PubMed ID: 26364642 [TBL] [Abstract][Full Text] [Related]
12. Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region. Soranno PA; Cheruvelil KS; Wagner T; Webster KE; Bremigan MT PLoS One; 2015; 10(8):e0135454. PubMed ID: 26267813 [TBL] [Abstract][Full Text] [Related]
13. [Spatial-temporal Variations and Driving of Nitrogen and Phosphorus Ratios in Lakes in the Middle and Lower Reaches of Yangtze River]. Ji PF; Xu H; Zhan X; Zhu GW; Zou W; Zhu MY; Kang LJ Huan Jing Ke Xue; 2020 Sep; 41(9):4030-4041. PubMed ID: 33124283 [TBL] [Abstract][Full Text] [Related]
14. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes. Liang Z; Soranno PA; Wagner T Water Res; 2020 Oct; 185():116236. PubMed ID: 32739700 [TBL] [Abstract][Full Text] [Related]
15. The combined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8°S). León-Muñoz J; Echeverría C; Marcé R; Riss W; Sherman B; Iriarte JL J Environ Manage; 2013 Oct; 128():283-91. PubMed ID: 23770379 [TBL] [Abstract][Full Text] [Related]
16. Export of non-point source suspended sediment, nitrogen, and phosphorus from sloping highland agricultural fields in the East Asian monsoon region. Reza A; Eum J; Jung S; Choi Y; Owen JS; Kim B Environ Monit Assess; 2016 Dec; 188(12):692. PubMed ID: 27888424 [TBL] [Abstract][Full Text] [Related]
17. Historical accumulation of N and P and sources of organic matter and N in sediment in an agricultural reservoir in Northern China. Ni Z; Wang S; Chu Z; Jin X Environ Sci Pollut Res Int; 2015 Jul; 22(13):9951-64. PubMed ID: 25663341 [TBL] [Abstract][Full Text] [Related]
18. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie. Kast JB; Apostel AM; Kalcic MM; Muenich RL; Dagnew A; Long CM; Evenson G; Martin JF J Environ Manage; 2021 Feb; 279():111803. PubMed ID: 33341725 [TBL] [Abstract][Full Text] [Related]
19. Agricultural non-point sources and their effects on chlorophyll-a in a eutrophic lake over three decades (1985-2020). Wang J; Lu J; Zhang Z; Han X; Zhang C; Chen X Environ Sci Pollut Res Int; 2022 Jul; 29(31):46634-46648. PubMed ID: 35171419 [TBL] [Abstract][Full Text] [Related]
20. Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion. Zhang W; Pueppke SG; Li H; Geng J; Diao Y; Hyndman DW Environ Pollut; 2019 Dec; 255(Pt 2):113273. PubMed ID: 31627173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]