These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32485084)

  • 1. Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Low-Iridium Oxygen Evolution Catalysts.
    Chen H; Shi L; Liang X; Wang L; Asefa T; Zou X
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19654-19658. PubMed ID: 32485084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO
    Yang L; Yu G; Ai X; Yan W; Duan H; Chen W; Li X; Wang T; Zhang C; Huang X; Chen JS; Zou X
    Nat Commun; 2018 Dec; 9(1):5236. PubMed ID: 30531797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activating Inert, Nonprecious Perovskites with Iridium Dopants for Efficient Oxygen Evolution Reaction under Acidic Conditions.
    Liang X; Shi L; Liu Y; Chen H; Si R; Yan W; Zhang Q; Li GD; Yang L; Zou X
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7631-7635. PubMed ID: 30775830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Edge Active Sites via Intrinsic In-Plane Iridium Deficiency in Layered Iridium Oxides for Oxygen Evolution Electrocatalysis.
    Wang L; Du R; Liang X; Zou Y; Zhao X; Chen H; Zou X
    Adv Mater; 2024 Apr; 36(16):e2312608. PubMed ID: 38195802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-iridium electrocatalysts for acidic oxygen evolution.
    Fan M; Liang X; Chen H; Zou X
    Dalton Trans; 2020 Nov; 49(44):15568-15573. PubMed ID: 33112324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
    Seitz LC; Dickens CF; Nishio K; Hikita Y; Montoya J; Doyle A; Kirk C; Vojvodic A; Hwang HY; Norskov JK; Jaramillo TF
    Science; 2016 Sep; 353(6303):1011-1014. PubMed ID: 27701108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution.
    Chen J; Cui P; Zhao G; Rui K; Lao M; Chen Y; Zheng X; Jiang Y; Pan H; Dou SX; Sun W
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12540-12544. PubMed ID: 31318124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2.
    Stoerzinger KA; Qiao L; Biegalski MD; Shao-Horn Y
    J Phys Chem Lett; 2014 May; 5(10):1636-41. PubMed ID: 26270358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts.
    Ying Y; Godínez Salomón JF; Lartundo-Rojas L; Moreno A; Meyer R; Damin CA; Rhodes CP
    Nanoscale Adv; 2021 Apr; 3(7):1976-1996. PubMed ID: 36133093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Iridium Mass Activity of 6H-Phase, Ir-Based Perovskite with Nonprecious Incorporation for Acidic Oxygen Evolution Electrocatalysis.
    Yang L; Chen H; Shi L; Li X; Chu X; Chen W; Li N; Zou X
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42006-42013. PubMed ID: 31633901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supported Iridium-based Oxygen Evolution Reaction Electrocatalysts - Recent Developments.
    Moriau L; Smiljanić M; Lončar A; Hodnik N
    ChemCatChem; 2022 Oct; 14(20):e202200586. PubMed ID: 36605357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanthanides Regulated the Amorphization-Crystallization of IrO
    Ma C; Sun W; Qamar Zaman W; Zhou Z; Zhang H; Shen Q; Cao L; Yang J
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34980-34989. PubMed ID: 32658446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Oxygen Exchange in Rutile IrO
    Schweinar K; Gault B; Mouton I; Kasian O
    J Phys Chem Lett; 2020 Jul; 11(13):5008-5014. PubMed ID: 32496784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating the Discovery of Metastable IrO
    Feng J; Dong Z; Ji Y; Li Y
    JACS Au; 2023 Apr; 3(4):1131-1140. PubMed ID: 37124307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IrO
    Yan T; Chen S; Sun W; Liu Y; Pan L; Shi C; Zhang X; Huang ZF; Zou JJ
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6912-6922. PubMed ID: 36718123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts.
    Gao J; Liu Y; Liu B; Huang KW
    ACS Nano; 2022 Nov; 16(11):17761-17777. PubMed ID: 36355040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Step Electrospun Ir/IrO
    Moon S; Cho YB; Yu A; Kim MH; Lee C; Lee Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1979-1987. PubMed ID: 30582793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation.
    Li W; Bu Y; Ge X; Li F; Han GF; Baek JB
    ChemSusChem; 2024 Jul; 17(13):e202400295. PubMed ID: 38362788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sr-Stabilized IrMnO
    Kuang J; Deng B; Jiang Z; Wang Y; Jiang ZJ
    Adv Mater; 2024 Mar; 36(13):e2306934. PubMed ID: 38135663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.