BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32485159)

  • 21. Structural features and the reaction mechanism of cytochrome oxidase: iron and copper X-ray absorption fine structure.
    Powers L; Chance B; Ching Y; Angiolillo P
    Biophys J; 1981 Jun; 34(3):465-98. PubMed ID: 6264990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiconformation continuum electrostatics analysis of the effects of a buried Asp introduced near heme a in Rhodobacter sphaeroides cytochrome c oxidase.
    Zhang J; Gunner MR
    Biochemistry; 2010 Sep; 49(37):8043-52. PubMed ID: 20701325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The electron distribution in the "activated" state of cytochrome c oxidase.
    Vilhjálmsdóttir J; Gennis RB; Brzezinski P
    Sci Rep; 2018 May; 8(1):7502. PubMed ID: 29760451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FTIR studies of internal proton transfer reactions linked to inter-heme electron transfer in bovine cytochrome c oxidase.
    McMahon BH; Fabian M; Tomson F; Causgrove TP; Bailey JA; Rein FN; Dyer RB; Palmer G; Gennis RB; Woodruff WH
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):321-31. PubMed ID: 15100047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing the proton loading site in cytochrome c oxidase.
    Lu J; Gunner MR
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12414-9. PubMed ID: 25114210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytochrome c oxidase: chemistry of a molecular machine.
    Musser SM; Stowell MH; Chan SI
    Adv Enzymol Relat Areas Mol Biol; 1995; 71():79-208. PubMed ID: 8644492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protonation of the oxo-bridged heme/copper assemblies: Modeling the oxidized state of the cytochrome c oxidase active site.
    Carrasco MC; Dezarn KJ; Khan FST; Hematian S
    J Inorg Biochem; 2021 Dec; 225():111593. PubMed ID: 34555598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of reduction of heme a and Cu(A) on the oxidized catalytic center of cytochrome c oxidase: insight from organic solvents.
    Fabian M; Jancura D; Bona M; Musatov A; Baran M; Palmer G
    Biochemistry; 2006 Apr; 45(13):4277-83. PubMed ID: 16566602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A.
    Tsukihara T; Aoyama H; Yamashita E; Tomizaki T; Yamaguchi H; Shinzawa-Itoh K; Nakashima R; Yaono R; Yoshikawa S
    Science; 1995 Aug; 269(5227):1069-74. PubMed ID: 7652554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DFT Fe
    Du WH; Götz AW; Noodleman L
    Inorg Chem; 2019 Oct; 58(20):13933-13944. PubMed ID: 31566371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-spin ferric forms of cytochrome a3 in mixed-ligand and partially reduced cyanide-bound derivatives of cytochrome c oxidase.
    Hill BC; Brittain T; Eglinton DG; Gadsby PM; Greenwood C; Nicholls P; Peterson J; Thomson AJ; Woon TC
    Biochem J; 1983 Oct; 215(1):57-66. PubMed ID: 6312973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fourier-transform infrared study of azide binding to the Fea3-CuB binuclear site of bovine heart cytochrome c oxidase: new evidence for a redox-linked conformational change at the binuclear site.
    Tsubaki M
    Biochemistry; 1993 Jan; 32(1):174-82. PubMed ID: 8380332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectral and kinetic equivalence of oxidized cytochrome C oxidase as isolated and "activated" by reoxidation.
    Jancura D; Berka V; Antalik M; Bagelova J; Gennis RB; Palmer G; Fabian M
    J Biol Chem; 2006 Oct; 281(41):30319-25. PubMed ID: 16905536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radical in the Peroxide-Produced F-Type Ferryl Form of Bovine Cytochrome
    Sztachova T; Tomkova A; Cizmar E; Jancura D; Fabian M
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of bovine cytochrome c oxidase in the ligand-free reduced state at neutral pH.
    Luo F; Shinzawa-Itoh K; Hagimoto K; Shimada A; Shimada S; Yamashita E; Yoshikawa S; Tsukihara T
    Acta Crystallogr F Struct Biol Commun; 2018 Feb; 74(Pt 2):92-98. PubMed ID: 29400318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria.
    Morgan JE; Wikström M
    Biochemistry; 1991 Jan; 30(4):948-58. PubMed ID: 1846562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand trapping by cytochrome c oxidase: implications for gating at the catalytic center.
    Parul D; Palmer G; Fabian M
    J Biol Chem; 2010 Feb; 285(7):4536-43. PubMed ID: 20037139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A role for the protein in internal electron transfer to the catalytic center of cytochrome c oxidase.
    Antalik M; Jancura D; Palmer G; Fabian M
    Biochemistry; 2005 Nov; 44(45):14881-9. PubMed ID: 16274235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase.
    Popović DM; Quenneville J; Stuchebrukhov AA
    J Phys Chem B; 2005 Mar; 109(8):3616-26. PubMed ID: 16851400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Water Dimer Shift Activates a Proton Pumping Pathway in the P
    Han Du WG; Götz AW; Noodleman L
    Inorg Chem; 2018 Feb; 57(3):1048-1059. PubMed ID: 29308889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.