BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 3248521)

  • 1. Behaviour of microtubules and actin filaments in living Drosophila embryos.
    Kellogg DR; Mitchison TJ; Alberts BM
    Development; 1988 Aug; 103(4):675-86. PubMed ID: 3248521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of the cytoskeleton in early Drosophila embryos.
    Karr TL; Alberts BM
    J Cell Biol; 1986 Apr; 102(4):1494-509. PubMed ID: 3514634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using total internal reflection fluorescence (TIRF) microscopy to visualize cortical actin and microtubules in the Drosophila syncytial embryo.
    Webb RL; Rozov O; Watkins SC; McCartney BM
    Dev Dyn; 2009 Oct; 238(10):2622-32. PubMed ID: 19718762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging the cytoskeleton in live Xenopus laevis embryos.
    Woolner S; Miller AL; Bement WM
    Methods Mol Biol; 2009; 586():23-39. PubMed ID: 19768423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cytoskeleton and morphogenesis of the early Drosophila embryo.
    Sullivan W; Theurkauf WE
    Curr Opin Cell Biol; 1995 Feb; 7(1):18-22. PubMed ID: 7755985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of actin filament and microtubule affinity chromatography to identify proteins that bind to the cytoskeleton.
    Miller KG; Field CM; Alberts BM; Kellogg DR
    Methods Enzymol; 1991; 196():303-19. PubMed ID: 2034126
    [No Abstract]   [Full Text] [Related]  

  • 7. The teleost cone cytoskeleton. Localization of actin, microtubules, and intermediate filaments.
    Nagle BW; Okamoto C; Taggart B; Burnside B
    Invest Ophthalmol Vis Sci; 1986 May; 27(5):689-701. PubMed ID: 3700018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cytoskeleton of the early Drosophila embryo.
    Warn RM
    J Cell Sci Suppl; 1986; 5():311-28. PubMed ID: 3308915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro reconstitution of dynamic microtubules interacting with actin filament networks.
    Preciado López M; Huber F; Grigoriev I; Steinmetz MO; Akhmanova A; Dogterom M; Koenderink GH
    Methods Enzymol; 2014; 540():301-20. PubMed ID: 24630114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytoskeletal mechanics and dynamics in the
    Lv Z; de-Carvalho J; Telley IA; Großhans J
    J Cell Sci; 2021 Feb; 134(4):. PubMed ID: 33597155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron microscopic visualization of actin filaments in the early embryo of Drosophila melanogaster: the use of phalloidin and tropomyosin.
    Katoh K; Ichikawa H; Ishikawa H
    J Electron Microsc (Tokyo); 1991 Feb; 40(1):70-5. PubMed ID: 1907635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrosomes and the Scrambled protein coordinate microtubule-independent actin reorganization.
    Stevenson VA; Kramer J; Kuhn J; Theurkauf WE
    Nat Cell Biol; 2001 Jan; 3(1):68-75. PubMed ID: 11146628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural interaction of cytoskeletal components.
    Schliwa M; van Blerkom J
    J Cell Biol; 1981 Jul; 90(1):222-35. PubMed ID: 7019221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface cap modifications in cold-treated Drosophila melanogaster embryos.
    Callaini G; Riparbelli MG
    Cell Tissue Res; 1992 Dec; 270(3):553-8. PubMed ID: 1486607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domains of the Pavarotti kinesin-like protein that direct its subcellular distribution: effects of mislocalisation on the tubulin and actin cytoskeleton during Drosophila oogenesis.
    Minestrini G; Máthé E; Glover DM
    J Cell Sci; 2002 Feb; 115(Pt 4):725-36. PubMed ID: 11865028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic ordering of nuclei in syncytial embryos: a quantitative analysis of the role of cytoskeletal networks.
    Kanesaki T; Edwards CM; Schwarz US; Grosshans J
    Integr Biol (Camb); 2011 Nov; 3(11):1112-9. PubMed ID: 22001900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos.
    Lantz VA; Miller KG
    J Cell Biol; 1998 Feb; 140(4):897-910. PubMed ID: 9472041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermicrotubular actin filaments in the transalar cytoskeletal arrays of Drosophila.
    Mogensen MM; Tucker JB
    J Cell Sci; 1988 Nov; 91 ( Pt 3)():431-8. PubMed ID: 3151490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of actin filaments with microtubules.
    Pollard TD; Selden SC; Maupin P
    J Cell Biol; 1984 Jul; 99(1 Pt 2):33s-37s. PubMed ID: 6430911
    [No Abstract]   [Full Text] [Related]  

  • 20. Microtubule distribution reveals superficial metameric patterns in the early Drosophila embryo.
    Callaini G
    Development; 1989 Sep; 107(1):35-41. PubMed ID: 2516799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.