BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1495 related articles for article (PubMed ID: 32485511)

  • 21. Machine Learning Analysis of Time-Dependent Features for Predicting Adverse Events During Hemodialysis Therapy: Model Development and Validation Study.
    Liu YS; Yang CY; Chiu PF; Lin HC; Lo CC; Lai AS; Chang CC; Lee OK
    J Med Internet Res; 2021 Sep; 23(9):e27098. PubMed ID: 34491204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retrospective Study on the Influencing Factors and Prediction of Hospitalization Expenses for Chronic Renal Failure in China Based on Random Forest and LASSO Regression.
    Dai P; Chang W; Xin Z; Cheng H; Ouyang W; Luo A
    Front Public Health; 2021; 9():678276. PubMed ID: 34211956
    [No Abstract]   [Full Text] [Related]  

  • 23. Research on prediction of compressive strength of fly ash and slag mixed concrete based on machine learning.
    Wang M; Kang J; Liu W; Su J; Li M
    PLoS One; 2022; 17(12):e0279293. PubMed ID: 36574382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of weighted arithmetic water quality index for urban water quality using ensemble machine learning model.
    Mohseni U; Pande CB; Chandra Pal S; Alshehri F
    Chemosphere; 2024 Mar; 352():141393. PubMed ID: 38325619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning-based prediction of hospital prolonged length of stay admission at emergency department: a Gradient Boosting algorithm analysis.
    Zeleke AJ; Palumbo P; Tubertini P; Miglio R; Chiari L
    Front Artif Intell; 2023; 6():1179226. PubMed ID: 37588696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of data intelligence algorithms in modeling daily reference evapotranspiration under input data limitation scenarios in semi-arid climatic condition.
    Rajput J; Singh M; Lal K; Khanna M; Sarangi A; Mukherjee J; Singh S
    Water Sci Technol; 2023 May; 87(10):2504-2528. PubMed ID: 37257106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance Evaluation of Regression Models for the Prediction of the COVID-19 Reproduction Rate.
    Kaliappan J; Srinivasan K; Mian Qaisar S; Sundararajan K; Chang CY; C S
    Front Public Health; 2021; 9():729795. PubMed ID: 34595149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dialysis adequacy predictions using a machine learning method.
    Kim HW; Heo SJ; Kim JY; Kim A; Nam CM; Kim BS
    Sci Rep; 2021 Jul; 11(1):15417. PubMed ID: 34326393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance prediction of ZVI-based anaerobic digestion reactor using machine learning algorithms.
    Xu W; Long F; Zhao H; Zhang Y; Liang D; Wang L; Lesnik KL; Cao H; Zhang Y; Liu H
    Waste Manag; 2021 Feb; 121():59-66. PubMed ID: 33360168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment and quantification of ovarian reserve on the basis of machine learning models.
    Ding T; Ren W; Wang T; Han Y; Ma W; Wang M; Fu F; Li Y; Wang S
    Front Endocrinol (Lausanne); 2023; 14():1087429. PubMed ID: 37008906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed.
    Anmala J; Turuganti V
    Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model.
    Kigo SN; Omondi EO; Omolo BO
    Sci Rep; 2023 Oct; 13(1):17315. PubMed ID: 37828360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia.
    Bhagat SK; Tung TM; Yaseen ZM
    J Hazard Mater; 2021 Feb; 403():123492. PubMed ID: 32763636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach.
    Tarwidi D; Pudjaprasetya SR; Adytia D; Apri M
    MethodsX; 2023; 10():102119. PubMed ID: 37007622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing vancomycin dosing in pediatrics: a machine learning approach to predict trough concentrations in children under four years of age.
    Yin M; Jiang Y; Yuan Y; Li C; Gao Q; Lu H; Li Z
    Int J Clin Pharm; 2024 Jun; ():. PubMed ID: 38861047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning Model for Predicting Intradialytic Hypotension Without Privacy Infringement: A Retrospective Two-Center Study.
    Kim HW; Heo SJ; Kim M; Lee J; Park KH; Lee G; Baeg SI; Kwon YE; Choi HM; Oh DJ; Nam CM; Kim BS
    Front Med (Lausanne); 2022; 9():878858. PubMed ID: 35872786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning].
    Lin Y; Wu JY; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine Learning to Predict In-Hospital Morbidity and Mortality after Traumatic Brain Injury.
    Matsuo K; Aihara H; Nakai T; Morishita A; Tohma Y; Kohmura E
    J Neurotrauma; 2020 Jan; 37(1):202-210. PubMed ID: 31359814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models.
    Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T
    Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 75.