These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32485694)

  • 1. Effects of device geometry and material properties on dielectric losses in superconducting coplanar-waveguide resonators.
    Lahtinen V; Möttönen M
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32485694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Q trenched aluminum coplanar resonators with an ultrasonic edge microcutting for superconducting quantum devices.
    Zikiy EV; Ivanov AI; Smirnov NS; Moskalev DO; Polozov VI; Matanin AR; Malevannaya EI; Echeistov VV; Konstantinova TG; Rodionov IA
    Sci Rep; 2023 Sep; 13(1):15536. PubMed ID: 37730848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Passivation of Niobium Superconducting Quantum Circuits Using Self-Assembled Monolayers.
    Alghadeer M; Banerjee A; Hajr A; Hussein H; Fariborzi H; Rao SG
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2319-2328. PubMed ID: 36573579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing dielectric properties of ultra-thin films using superconducting coplanar microwave resonators.
    Ebensperger NG; Ferdinand B; Koelle D; Kleiner R; Dressel M; Scheffler M
    Rev Sci Instrum; 2019 Nov; 90(11):114701. PubMed ID: 31779383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric properties of porous silicon for use as a substrate for the on-chip integration of millimeter-wave devices in the frequency range 140 to 210 GHz.
    Sarafis P; Nassiopoulou AG
    Nanoscale Res Lett; 2014; 9(1):418. PubMed ID: 25206316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 40 GHz RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (HepG2) dielectric characterization.
    Chen YF; Wu HW; Hong YH; Lee HY
    Biosens Bioelectron; 2014 Nov; 61():417-21. PubMed ID: 24934741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance-matched coplanar-waveguide metal-powder low-pass filters for cryogenic applications.
    Lyatti M; Roth R; Gundareva I; Grützmacher D; Schäpers T
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39016704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid quantum systems with high-T[Formula: see text] superconducting resonators.
    Velluire-Pellat Z; Maréchal E; Moulonguet N; Saïz G; Ménard GC; Kozlov S; Couëdo F; Amari P; Medous C; Paris J; Hostein R; Lesueur J; Feuillet-Palma C; Bergeal N
    Sci Rep; 2023 Sep; 13(1):14366. PubMed ID: 37658090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperbolic lattices in circuit quantum electrodynamics.
    Kollár AJ; Fitzpatrick M; Houck AA
    Nature; 2019 Jul; 571(7763):45-50. PubMed ID: 31270482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films.
    Lue HT; Tseng TY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1640-7. PubMed ID: 11800126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced Loss and Prevention of Substrate Modes with a Novel Coplanar Waveguide Based on Gap Waveguide Technology.
    Biurrun-Quel C; Teniente J; Del-Río C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials loss measurements using superconducting microwave resonators.
    McRae CRH; Wang H; Gao J; Vissers MR; Brecht T; Dunsworth A; Pappas DP; Mutus J
    Rev Sci Instrum; 2020 Sep; 91(9):091101. PubMed ID: 33003823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling Rydberg Atoms to Microwave Fields in a Superconducting Coplanar Waveguide Resonator.
    Morgan AA; Hogan SD
    Phys Rev Lett; 2020 May; 124(19):193604. PubMed ID: 32469590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave probing of bulk dielectrics using superconducting coplanar resonators in distant-flip-chip geometry.
    Wendel L; Engl VT; Untereiner G; Ebensperger NG; Dressel M; Farag A; Ubl M; Giessen H; Scheffler M
    Rev Sci Instrum; 2020 May; 91(5):054702. PubMed ID: 32486720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron Spin Resonance at the Level of 10^{4} Spins Using Low Impedance Superconducting Resonators.
    Eichler C; Sigillito AJ; Lyon SA; Petta JR
    Phys Rev Lett; 2017 Jan; 118(3):037701. PubMed ID: 28157376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy.
    Malissa H; Schuster DI; Tyryshkin AM; Houck AA; Lyon SA
    Rev Sci Instrum; 2013 Feb; 84(2):025116. PubMed ID: 23464260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable Coplanar Waveguide (CPW) and Half-Mode Substrate Integrated Waveguide (HMSIW) Band-Stop Filters Using a Varactor-Loaded Metamaterial-Inspired Open Resonator.
    Hinojosa J; Saura-Ródenas A; Alvarez-Melcon A; Martínez-Viviente FL
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29283391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A metamolecule antenna for coplanar waveguides.
    Maple LC; Berry SA; Stenning GB; Bowden GJ; de Groot PA; Apostolopoulos V
    Opt Express; 2014 Dec; 22(25):30473-81. PubMed ID: 25606993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical Casimir effect in a superconducting coplanar waveguide.
    Johansson JR; Johansson G; Wilson CM; Nori F
    Phys Rev Lett; 2009 Oct; 103(14):147003. PubMed ID: 19905595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.