These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32485795)

  • 1. Implementation of a Single Emulsion Mask for Three-Dimensional (3D) Microstructure Fabrication of Micromixers Using the Grayscale Photolithography Technique.
    Abdul Hamid ISL; Khi Khim B; Sal Hamid S; Abd Rahman MF; Abd Manaf A
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32485795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication.
    Song SH; Kim K; Choi SE; Han S; Lee HS; Kwon S; Park W
    Opt Lett; 2014 Sep; 39(17):5162-5. PubMed ID: 25166099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.
    Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH
    Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review on Micromixers.
    Cai G; Xue L; Zhang H; Lin J
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xurography as a Rapid Fabrication Alternative for Point-of-Care Devices: Assessment of Passive Micromixers.
    Martínez-López JI; Mojica M; Rodríguez CA; Siller HR
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27196904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates.
    Rafeie M; Welleweerd M; Hassanzadeh-Barforoushi A; Asadnia M; Olthuis W; Ebrahimi Warkiani M
    Biomicrofluidics; 2017 Jan; 11(1):014108. PubMed ID: 28798843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography.
    Kasi DG; de Graaf MNS; Motreuil-Ragot PA; Frimat JMS; Ferrari MD; Sarro PM; Mastrangeli M; van den Maagdenberg AMJM; Mummery CL; Orlova VV
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers.
    Zeraatkar M; de Tullio MD; Percoco G
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers.
    Bohr A; Boetker J; Wang Y; Jensen H; Rantanen J; Beck-Broichsitter M
    J Pharm Sci; 2017 Mar; 106(3):835-842. PubMed ID: 27938892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromixing within microfluidic devices: Fundamentals, design, and fabrication.
    Cai S; Jin Y; Lin Y; He Y; Zhang P; Ge Z; Yang W
    Biomicrofluidics; 2023 Dec; 17(6):061503. PubMed ID: 38098692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing Silk Fibroin-Based Three-Dimensional Microfluidic Devices
    Zhou M; Shi X; Li X; Xiao G; Liang L; Ju J; Wang F; Xia Q; Sun W; Qiao Y; Yu L; Lu Z
    ACS Appl Bio Mater; 2021 Nov; 4(11):8039-8048. PubMed ID: 35006785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilevel microfluidics via single-exposure photolithography.
    Toepke MW; Kenis PJ
    J Am Chem Soc; 2005 Jun; 127(21):7674-5. PubMed ID: 15913346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gray-scale photolithography using microfluidic photomasks.
    Chen C; Hirdes D; Folch A
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1499-504. PubMed ID: 12574512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cost-effective serpentine micromixer utilizing ellipse curve.
    Wang X; Liu Z; Cai Y; Wang B; Luo X
    Anal Chim Acta; 2021 Apr; 1155():338355. PubMed ID: 33766315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixing Performance of a Planar Asymmetric Contraction-and-Expansion Micromixer.
    Natsuhara D; Saito R; Okamoto S; Nagai M; Shibata T
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling amorphous silicon in scratching for fabricating high-performance micromixers.
    Chen T; Cui L; He W; Liu R; Feng C; Wu L; Wang Y; Liu H; Qian L; Yu B
    Lab Chip; 2023 Aug; 23(17):3794-3801. PubMed ID: 37498210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.
    Farshchian B; Amirsadeghi A; Choi J; Park DS; Kim N; Park S
    Nano Converg; 2017; 4(1):4. PubMed ID: 28303213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-Printed Complex Microstructures with a Self-Sacrificial Structure Enabled by Grayscale Polymerization and Ultrasonic Treatment.
    Liao Y; Li W; Zhan Z; Duan H; Liu P; Chen Y; Wang Z
    ACS Omega; 2021 Jul; 6(28):18281-18288. PubMed ID: 34308059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.
    Enders A; Siller IG; Urmann K; Hoffmann MR; Bahnemann J
    Small; 2019 Jan; 15(2):e1804326. PubMed ID: 30548194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design.
    Borro BC; Bohr A; Bucciarelli S; Boetker JP; Foged C; Rantanen J; Malmsten M
    J Colloid Interface Sci; 2019 Mar; 538():559-568. PubMed ID: 30551068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.