These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32485795)

  • 21. Micromixing within microfluidic devices.
    Capretto L; Cheng W; Hill M; Zhang X
    Top Curr Chem; 2011; 304():27-68. PubMed ID: 21526435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls.
    Javaid MU; Cheema TA; Park CW
    Micromachines (Basel); 2017 Dec; 9(1):. PubMed ID: 30393285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design.
    Borro BC; Bohr A; Bucciarelli S; Boetker JP; Foged C; Rantanen J; Malmsten M
    J Colloid Interface Sci; 2019 Mar; 538():559-568. PubMed ID: 30551068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.
    Enders A; Siller IG; Urmann K; Hoffmann MR; Bahnemann J
    Small; 2019 Jan; 15(2):e1804326. PubMed ID: 30548194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.
    Farshchian B; Amirsadeghi A; Choi J; Park DS; Kim N; Park S
    Nano Converg; 2017; 4(1):4. PubMed ID: 28303213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An overview on state-of-art of micromixer designs, characteristics and applications.
    Wang X; Liu Z; Wang B; Cai Y; Song Q
    Anal Chim Acta; 2023 Oct; 1279():341685. PubMed ID: 37827660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography.
    Lee SA; Chung SE; Park W; Lee SH; Kwon S
    Lab Chip; 2009 Jun; 9(12):1670-5. PubMed ID: 19495448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multilayer Soft Photolithography Fabrication of Microfluidic Devices Using a Custom-Built Wafer-Scale PDMS Slab Aligner and Cost-Efficient Equipment.
    Nguyen T; Sarkar T; Tran T; Moinuddin SM; Saha D; Ahsan F
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic Bioreactor with Fibrous Micromixers for In Vitro mRNA Transcription.
    Choi I; Ahn GY; Kim ES; Hwang SH; Park HJ; Yoon S; Lee J; Cho Y; Nam JH; Choi SW
    Nano Lett; 2023 Sep; 23(17):7897-7905. PubMed ID: 37435905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward the Next Generation of Passive Micromixers: A Novel 3-D Design Approach.
    Okuducu MB; Aral MM
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33808487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micromixers and their applications in kinetic analysis of biochemical reactions.
    Liu C; Li Y; Liu BF
    Talanta; 2019 Dec; 205():120136. PubMed ID: 31450434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical and Experimental Investigation on a "Tai Chi"-Shaped Planar Passive Micromixer.
    Xia A; Shen C; Wei C; Meng L; Hu Z; Zhang L; Chen M; Li L; He N; Hao X
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.
    Sivashankar S; Agambayev S; Mashraei Y; Li EQ; Thoroddsen ST; Salama KN
    Biomicrofluidics; 2016 May; 10(3):034120. PubMed ID: 27453767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mixing Performance Analysis and Optimal Design of a Novel Passive Baffle Micromixer.
    Zheng Y; Liu Y; Tang C; Liu B; Zou H; Li W; Zhang H
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using pattern homogenization of binary grayscale masks to fabricate microfluidic structures with 3D topography.
    Atencia J; Barnes S; Douglas J; Meacham M; Locascio LE
    Lab Chip; 2007 Nov; 7(11):1567-73. PubMed ID: 17960287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homebrew Photolithography for the Rapid and Low-Cost, "Do It Yourself" Prototyping of Microfluidic Devices.
    Todd D; Krasnogor N
    ACS Omega; 2023 Sep; 8(38):35393-35409. PubMed ID: 37780017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Stretchable Arch Ribbon Array Fabricated via Grayscale Lithography.
    Pang Y; Shu Y; Shavezipur M; Wang X; Mohammad MA; Yang Y; Zhao H; Deng N; Maboudian R; Ren TL
    Sci Rep; 2016 Jun; 6():28552. PubMed ID: 27345766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic enhanced emulsification process in 3D printed microfluidic device to encapsulate active pharmaceutical ingredients.
    Shrimal P; Jadeja G; Patel S
    Int J Pharm; 2022 May; 620():121754. PubMed ID: 35452716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling and simulation of a split and recombination-based passive micromixer with vortex-generating mixing units.
    Nishu IZ; Samad MF
    Heliyon; 2023 Apr; 9(4):e14745. PubMed ID: 37025873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length.
    Lim TW; Son Y; Jeong YJ; Yang DY; Kong HJ; Lee KS; Kim DP
    Lab Chip; 2011 Jan; 11(1):100-3. PubMed ID: 20938497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.