These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32485863)

  • 41. CuO Nanoparticles Decorated ZnO Nanorods Based Extended-Gate Field-Effect-Transistor (EGFET) for Enzyme-Free Glucose Sensing Application.
    Mishra AK; Jarwal DK; Mukherjee B; Jit S
    IEEE Trans Nanobioscience; 2022 Jan; 21(1):3-9. PubMed ID: 34520359
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New glucose biosensor based on glucose oxidase-immobilized gelatin film coated electrodes.
    Sungur S; Emregül E; Günendi G; Numanoğlu Y
    J Biomater Appl; 2004 Apr; 18(4):265-77. PubMed ID: 15070514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water-insoluble amorphous silk fibroin scaffolds from aqueous solutions.
    Fan Z; Xiao L; Lu G; Ding Z; Lu Q
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):798-808. PubMed ID: 31207049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-Rolling Refillable Tubular Enzyme Containers Made of Recombinant Spider Silk and Chitosan.
    Aigner T; Scheibel T
    ACS Appl Mater Interfaces; 2019 May; 11(17):15290-15297. PubMed ID: 30924630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An enhanced glucose biosensor using charge transfer techniques.
    Lee SR; Sawada K; Takao H; Ishida M
    Biosens Bioelectron; 2008 Dec; 24(4):650-6. PubMed ID: 18640027
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor.
    Zhao M; Li Z; Han Z; Wang K; Zhou Y; Huang J; Ye Z
    Biosens Bioelectron; 2013 Nov; 49():318-22. PubMed ID: 23792653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D Hydrogen Titanate Nanotubes on Ti Foil: A Carrier for Enzymatic Glucose Biosensor.
    Ma L; Yue Z; Huo G; Zhang S; Zhu B; Zhang S; Huang W
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32074985
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new strategy for achieving vertically-erected and hierarchical TiO2 nanosheets array/carbon cloth as a binder-free electrode for protein impregnation, direct electrochemistry and mediator-free glucose sensing.
    Liu J; He Z; Khoo SY; Tan TT
    Biosens Bioelectron; 2016 Mar; 77():942-9. PubMed ID: 26528809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode.
    Zhu L; Yang R; Zhai J; Tian C
    Biosens Bioelectron; 2007 Nov; 23(4):528-35. PubMed ID: 17764922
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation and properties of nanometer titanium dioxide/silk fibroin blend membrane.
    Xia Y; Gao G; Li Y
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):653-8. PubMed ID: 19235206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A study on the flow stability of regenerated silk fibroin aqueous solution.
    Wang H; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2005 Jul; 36(1-2):66-70. PubMed ID: 15916801
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Silk Fibroin As an Immobilization Matrix for Sensing Applications.
    Prakash NJ; Mane PP; George SM; Kandasubramanian B
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2015-2042. PubMed ID: 33861079
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanomolar level sensing of glucose in food samples using glucose oxidase confined MWCNT-Inulin-TiO
    Jayanthi Kalaivani G; Suja SK
    Food Chem; 2019 Nov; 298():124981. PubMed ID: 31260993
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spectral analysis of induced color change on periodically nanopatterned silk films.
    Amsden JJ; Perry H; Boriskina SV; Gopinath A; Kaplan DL; Dal Negro L; Omenetto FG
    Opt Express; 2009 Nov; 17(23):21271-9. PubMed ID: 19997366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose.
    Esmaeili C; Abdi MM; Mathew AP; Jonoobi M; Oksman K; Rezayi M
    Sensors (Basel); 2015 Sep; 15(10):24681-97. PubMed ID: 26404269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effective immobilization of glucose oxidase on chitosan submicron particles from gladius of Todarodes pacificus for glucose sensing.
    Anusha JR; Fleming AT; Kim HJ; Kim BC; Yu KH; Raj CJ
    Bioelectrochemistry; 2015 Aug; 104():44-50. PubMed ID: 25727854
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.
    Yasuzawa M; Omura Y; Hiura K; Li J; Fuchiwaki Y; Tanaka M
    Anal Sci; 2015; 31(11):1111-4. PubMed ID: 26561252
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanostrip flexible microwave enzymatic biosensor for noninvasive epidermal glucose sensing.
    Xue Q; Li Z; Wang Q; Pan W; Chang Y; Duan X
    Nanoscale Horiz; 2020 Jun; 5(6):934-943. PubMed ID: 32301449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dielectric breakdown strength of regenerated silk fibroin films as a function of protein conformation.
    Dickerson MB; Fillery SP; Koerner H; Singh KM; Martinick K; Drummy LF; Durstock MF; Vaia RA; Omenetto FG; Kaplan DL; Naik RR
    Biomacromolecules; 2013 Oct; 14(10):3509-14. PubMed ID: 23987229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.