These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32485951)

  • 21. Optimization of plasmonic enhancement of fluorescence on plastic substrates.
    Nooney RI; Stranik O; McDonagh C; MacCraith BD
    Langmuir; 2008 Oct; 24(19):11261-7. PubMed ID: 18771301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polarization dependence of plasmon enhanced fluorescence on Au nanorod array.
    Zhang M; Li C; Wang C; Zhang C; Wang Z; Han Q; Zheng H
    Appl Opt; 2017 Jan; 56(3):375-379. PubMed ID: 28157895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles.
    Reineck P; Gómez D; Ng SH; Karg M; Bell T; Mulvaney P; Bach U
    ACS Nano; 2013 Aug; 7(8):6636-48. PubMed ID: 23713513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods.
    Zhao L; Ming T; Chen H; Liang Y; Wang J
    Nanoscale; 2011 Sep; 3(9):3849-59. PubMed ID: 21826320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods.
    Zuo T; Goldwyn HJ; Isaacoff BP; Masiello DJ; Biteen JS
    J Phys Chem Lett; 2019 Sep; 10(17):5047-5054. PubMed ID: 31411474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO
    He J; Zheng W; Ligmajer F; Chan CF; Bao Z; Wong KL; Chen X; Hao J; Dai J; Yu SF; Lei DY
    Light Sci Appl; 2017 May; 6(5):e16217. PubMed ID: 30167245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.
    Enderlein J
    Biophys J; 2000 Apr; 78(4):2151-8. PubMed ID: 10733992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes.
    Kyeyune F; Botha JL; van Heerden B; Malý P; van Grondelle R; Diale M; Krüger TPJ
    Nanoscale; 2019 Aug; 11(32):15139-15146. PubMed ID: 31372623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conditionally activating optical contrast agent with enhanced sensitivity via gold nanoparticle plasmon energy transfer: feasibility study.
    Kang KA; Wang J
    J Nanobiotechnology; 2014 Dec; 12():56. PubMed ID: 25481683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parametric optimization of visible wavelength gold lattice geometries for improved plasmon-enhanced fluorescence spectroscopy.
    Norville CA; Smith KZ; Dawson JM
    Appl Opt; 2020 Mar; 59(8):2308-2318. PubMed ID: 32225762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.
    Cheng ZQ; Nan F; Yang DJ; Zhong YT; Ma L; Hao ZH; Zhou L; Wang QQ
    Nanoscale; 2015 Jan; 7(4):1463-70. PubMed ID: 25503522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic Enhancement of Two-Photon-Excited Luminescence of Single Quantum Dots by Individual Gold Nanorods.
    Zhang W; Caldarola M; Lu X; Orrit M
    ACS Photonics; 2018 Jul; 5(7):2960-2968. PubMed ID: 30057930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microscopic Study on Excitation and Emission Enhancement by the Plasmon Mode on a Plasmonic Chip.
    Chida H; Tawa K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directing fluorescence with plasmonic and photonic structures.
    Dutta Choudhury S; Badugu R; Lakowicz JR
    Acc Chem Res; 2015 Aug; 48(8):2171-80. PubMed ID: 26168343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Super-Resolving the Actual Position of Single Fluorescent Molecules Coupled to a Plasmonic Nanoantenna.
    Fu B; Isaacoff BP; Biteen JS
    ACS Nano; 2017 Sep; 11(9):8978-8987. PubMed ID: 28806873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilized gold nanorod-dye conjugates with controlled resonance coupling create bright surface-enhanced resonance Raman nanotags.
    McLintock A; Lee HJ; Wark AW
    Phys Chem Chem Phys; 2013 Nov; 15(43):18835-43. PubMed ID: 24084853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold Nanorod DNA Origami Antennas for 3 Orders of Magnitude Fluorescence Enhancement in NIR.
    Trofymchuk K; Kołątaj K; Glembockyte V; Zhu F; Acuna GP; Liedl T; Tinnefeld P
    ACS Nano; 2023 Jan; ():. PubMed ID: 36594816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Triplet-state-mediated super-resolution imaging of fluorophore-labeled gold nanorods.
    Blythe KL; Titus EJ; Willets KA
    Chemphyschem; 2014 Mar; 15(4):784-93. PubMed ID: 24254973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasensitive biosensors based on waveguide-coupled long-range surface plasmon resonance (WC-LRSPR) for enhanced fluorescence spectroscopy.
    Thi Tran NH; Phung VD; Thi Ta HK; Lam VD; Manh DH; Pham NK; Kim JY; Lee NY; Phan BT
    RSC Adv; 2021 Jun; 11(36):22450-22460. PubMed ID: 35480844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.