These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32485982)

  • 1. Serodynamic Analysis of the Piglets Born from Sows Vaccinated with Modified Live Vaccine or E2 Subunit Vaccine for Classical Swine Fever.
    Li YC; Chiou MT; Lin CN
    Pathogens; 2020 May; 9(6):. PubMed ID: 32485982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The challenges of classical swine fever control: modified live and E2 subunit vaccines.
    Huang YL; Deng MC; Wang FI; Huang CC; Chang CY
    Virus Res; 2014 Jan; 179():1-11. PubMed ID: 24211665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porcine reproductive and respiratory syndrome virus expressing E2 of classical swine fever virus protects pigs from a lethal challenge of highly-pathogenic PRRSV and CSFV.
    Gao F; Jiang Y; Li G; Zhou Y; Yu L; Li L; Tong W; Zheng H; Zhang Y; Yu H; Shan T; Yang S; Liu H; Zhao K; Tong G
    Vaccine; 2018 May; 36(23):3269-3277. PubMed ID: 29724508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of virus detection, productivity, and economic performance between lots of growing pigs vaccinated with two doses or one dose of PRRS MLV vaccine, under field conditions.
    Moura CAA; Philips R; Silva GS; Holtkamp DJ; Linhares DCL
    Prev Vet Med; 2022 Jul; 204():105669. PubMed ID: 35594607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge.
    Madera R; Gong W; Wang L; Burakova Y; Lleellish K; Galliher-Beckley A; Nietfeld J; Henningson J; Jia K; Li P; Bai J; Schlup J; McVey S; Tu C; Shi J
    BMC Vet Res; 2016 Sep; 12(1):197. PubMed ID: 27612954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune duration of a recombinant PRRSV vaccine expressing E2 of CSFV.
    Gao F; Jiang Y; Li G; Zhang Y; Zhao K; Zhu H; Li L; Yu L; Zheng H; Zhou Y; Tong W; Tong G
    Vaccine; 2020 Nov; 38(50):7956-7962. PubMed ID: 33131934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seroprevalence of antibodies to classical swine fever virus and porcine reproductive and respiratory syndrome virus in healthy pigs in Hunan Province, China.
    Yu H; Zhang L; Cai Y; Hao Z; Luo Z; Peng T; Liu L; Wang N; Wang G; Deng Z; Zhan Y
    Pol J Vet Sci; 2022 Sep; 25(3):375-381. PubMed ID: 36155561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of immune efficacy of recombinant PRRSV vectored vaccine rPRRSV-E2 in piglets with maternal derived antibodies.
    Gao F; Jiang Y; Li G; Li L; Zhang Y; Yu L; Zheng H; Tong W; Zhou Y; Liu C; Shan T; Yu H; Kong N; Chen P; Tong G
    Vet Microbiol; 2020 Sep; 248():108833. PubMed ID: 32891948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Up-regulation of IL-10 upon PRRSV vaccination impacts on the immune response against CSFV.
    Wang X; Mu G; Dang R; Yang Z
    Vet Microbiol; 2016 Dec; 197():68-71. PubMed ID: 27938685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of transplacental transmission of moderate-virulent classical swine fever virus after single or double vaccination with an E2 subunit vaccine.
    de Smit AJ; Bouma A; de Kluijver EP; Terpstra C; Moormann RJ
    Vet Q; 2000 Jul; 22(3):150-3. PubMed ID: 10952445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody response and maternal immunity upon boosting PRRSV-immune sows with experimental farm-specific and commercial PRRSV vaccines.
    Geldhof MF; Van Breedam W; De Jong E; Lopez Rodriguez A; Karniychuk UU; Vanhee M; Van Doorsselaere J; Maes D; Nauwynck HJ
    Vet Microbiol; 2013 Dec; 167(3-4):260-71. PubMed ID: 24041768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy.
    Coronado L; Bohórquez JA; Muñoz-González S; Perez LJ; Rosell R; Fonseca O; Delgado L; Perera CL; Frías MT; Ganges L
    BMC Vet Res; 2019 Jul; 15(1):247. PubMed ID: 31307464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of classical swine fever E2 (CSF-E2) subunit vaccine efficacy in the prevention of virus transmission and impact of maternal derived antibody interference in field farm applications.
    Chen JY; Wu CM; Chen ZW; Liao CM; Deng MC; Chia MY; Huang C; Chien MS
    Porcine Health Manag; 2021 Jan; 7(1):9. PubMed ID: 33431028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of porcine reproductive and respiratory syndrome stabilization protocols in 23 French Farrow-to-finish farms located in a high-density swine area.
    Berton P; Normand V; Martineau GP; Bouchet F; Lebret A; Waret-Szkuta A
    Porcine Health Manag; 2017; 3():11. PubMed ID: 28546868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural infection with torque teno sus virus 1 (TTSuV1) suppresses the immune response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccination.
    Zhang Z; Wang Y; Fan H; Lu C
    Arch Virol; 2012 May; 157(5):927-33. PubMed ID: 22327391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy evaluation of three modified-live virus vaccines against a strain of porcine reproductive and respiratory syndrome virus NADC30-like.
    Zhou L; Yang B; Xu L; Jin H; Ge X; Guo X; Han J; Yang H
    Vet Microbiol; 2017 Aug; 207():108-116. PubMed ID: 28757009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproductive, productivity, and mortality outcomes in late-gestation gilts and their litters following simulation of inadvertent exposure to a modified-live vaccine strain of porcine reproductive and respiratory syndrome (PRRS) virus.
    Schelkopf A; Nerem J; Cowles B; Amodie D; Swalla R; Dee S
    Vaccine; 2014 Aug; 32(36):4639-43. PubMed ID: 24975816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of marker vaccine candidate CP7_E2alf in piglets with maternally derived C-strain antibodies.
    Rangelova D; Nielsen J; Strandbygaard B; Koenen F; Blome S; Uttenthal A
    Vaccine; 2012 Oct; 30(45):6376-81. PubMed ID: 22939909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of the classical swine fever (CSF) marker vaccine Porcilis Pesti in pregnant sows.
    Ahrens U; Kaden V; Drexler C; Visser N
    Vet Microbiol; 2000 Nov; 77(1-2):83-97. PubMed ID: 11042402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternally-derived neutralizing antibodies reduce vaccine efficacy against porcine reproductive and respiratory syndrome virus infection.
    Renson P; Fablet C; Andraud M; Normand V; Lebret A; Paboeuf F; Rose N; Bourry O
    Vaccine; 2019 Jul; 37(31):4318-4324. PubMed ID: 31248683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.